• Title/Summary/Keyword: Smart Grids

Search Result 79, Processing Time 0.023 seconds

Enhanced Markov-Difference Based Power Consumption Prediction for Smart Grids

  • Le, Yiwen;He, Jinghan
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.3
    • /
    • pp.1053-1063
    • /
    • 2017
  • Power prediction is critical to improve power efficiency in Smart Grids. Markov chain provides a useful tool for power prediction. With careful investigation of practical power datasets, we find an interesting phenomenon that the stochastic property of practical power datasets does not follow the Markov features. This mismatch affects the prediction accuracy if directly using Markov prediction methods. In this paper, we innovatively propose a spatial transform based data processing to alleviate this inconsistency. Furthermore, we propose an enhanced power prediction method, named by Spatial Mapping Markov-Difference (SMMD), to guarantee the prediction accuracy. In particular, SMMD adopts a second prediction adjustment based on the differential data to reduce the stochastic error. Experimental results validate that the proposed SMMD achieves an improvement in terms of the prediction accuracy with respect to state-of-the-art solutions.

Blockchain for Securing Smart Grids

  • Aldabbagh, Ghadah;Bamasag, Omaimah;Almasari, Lola;Alsaidalani, Rabab;Redwan, Afnan;Alsaggaf, Amaal
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.4
    • /
    • pp.255-263
    • /
    • 2021
  • Smart grid is a fully-automated, bi-directional, power transmission network based on the physical grid system, which combines sensor measurement, computer, information communication, and automatic control technology. Blockchain technology, with its security features, can be integrated with Smart Grids to provide secure and efficient power management and transmission. This paper dicusses the deployment of Blockchain technology in Smart Grid. It presents application areas and protocols in which blockchain can be applied to in securing smart grid. One application of each area is explored in detail, such as efficient peer-to-peer transaction, lower platform costs, faster processes, greater flexibility in power generation to transmission, distribution and power consumption in different energy storage systems, current barriers obstructing the implementation of blockchain applications with some level of maturity in financial services but concepts only in energy and other sectors. Wide range of energy applications suggesting a suitable blockchain architecture in smart grid operations, a sample block structure and the potential blockchain technicalities employed in it. Also, added with efficient data aggregation schemes based on the blockchain technology to overcome the challenges related to privacy and security in the smart grid. Later on, consensus algorithms and protocols are discussed. Monitoring of the usage and statistics of energy distribution systems that can also be used to remotely control energy flow to a particular area. Further, the discussion on the blockchain-based frameworks that helps in the diagnosis and maintenance of smart grid equipment. We have also discussed several commercial implementations of blockchain in the smart grid. Finally, various challenges have been discussed for integrating these technologies. Overall, it can be said at the present point in time that blockchain technology certainly shows a lot of potentials from a customer perspective too and should be further developed by market participants. The approaches seen thus far may have a disruptive effect in the future and might require additional regulatory intervention in an already tightly regulated energy market. If blockchains are to deliver benefits for consumers (whether as consumers or prosumers of energy), a strong focus on consumer issues will be needed.

Context-aware Recommendation System for Water Resources Distribution in Smart Water Grids (스마트 워터 그리드(Smart Water Grid) 수자원 분배를 위한 컨텍스트 인지 추천시스템)

  • Yang, Qinghai;Kwak, Kyung Sup
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.13 no.2
    • /
    • pp.80-89
    • /
    • 2014
  • In this paper, we conceive a context-aware recommendations system for water distribution in future smart water grids, with taking the end users' profiles, water types, network conditions into account. A spectral clustering approach is developed to cluster end users into different communities, based on the end users' common interests in water resources. A back-propagation (BP) neural network is designed to obtain the rating list of the end users' preferences on water resources and the water resource with the highest prediction rating is recommended to the end users. Simulation results demonstrate that the proposed scheme achieves the improved accuracy of recommendation within 2.5% errors notably together with a better user experience in contrast to traditional recommendations approaches.

Smart grid and nuclear power plant security by integrating cryptographic hardware chip

  • Kumar, Niraj;Mishra, Vishnu Mohan;Kumar, Adesh
    • Nuclear Engineering and Technology
    • /
    • v.53 no.10
    • /
    • pp.3327-3334
    • /
    • 2021
  • Present electric grids are advanced to integrate smart grids, distributed resources, high-speed sensing and control, and other advanced metering technologies. Cybersecurity is one of the challenges of the smart grid and nuclear plant digital system. It affects the advanced metering infrastructure (AMI), for grid data communication and controls the information in real-time. The research article is emphasized solving the nuclear and smart grid hardware security issues with the integration of field programmable gate array (FPGA), and implementing the latest Time Authenticated Cryptographic Identity Transmission (TACIT) cryptographic algorithm in the chip. The cryptographic-based encryption and decryption approach can be used for a smart grid distribution system embedding with FPGA hardware. The chip design is carried in Xilinx ISE 14.7 and synthesized on Virtex-5 FPGA hardware. The state of the art of work is that the algorithm is implemented on FPGA hardware that provides the scalable design with different key sizes, and its integration enhances the grid hardware security and switching. It has been reported by similar state-of-the-art approaches, that the algorithm was limited in software, not implemented in a hardware chip. The main finding of the research work is that the design predicts the utilization of hardware parameters such as slices, LUTs, flip-flops, memory, input/output blocks, and timing information for Virtex-5 FPGA synthesis before the chip fabrication. The information is extracted for 8-bit to 128-bit key and grid data with initial parameters. TACIT security chip supports 400 MHz frequency for 128-bit key. The research work is an effort to provide the solution for the industries working towards embedded hardware security for the smart grid, power plants, and nuclear applications.

Optimized Security Algorithm for IEC 61850 based Power Utility System

  • Yang, Hyo-Sik;Kim, Sang-Sig;Jang, Hyuk-Soo
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.3
    • /
    • pp.443-450
    • /
    • 2012
  • As power grids are integrated into one big umbrella (i.e., Smart Grid), communication network plays a key role in reliable and stable operation of power grids. For successful operation of smart grid, interoperability and security issues must be resolved. Security means providing network system integrity, authentication, and confidentiality service. For a cyber-attack to a power grid system, which may jeopardize the national security, vulnerability of communication infrastructure has a serious impact on the power grid network. While security aspects of power grid network have been studied much, security mechanisms are rarely adopted in power gird communication network. For security issues, strict timing requirements are defined in IEC 61850 for mission critical messages (i.e., GOOSE). In this paper, we apply security algorithms (i.e., MD-5, SHA-1, and RSA) and measure their processing time and transmission delay of secured mission critical messages. The results show the algorithms satisfying the timing requirements defined in IEC 61850 and we observer the algorithm that is optimal for secure communication of mission critical messages. Numerical analysis shows that SHA-1 is preferable for secure GOOSE message sending.

Study on the Next Disaster Safety Communication Network in M2M Communication (사물지능통신을 이용한 차세대 재난안전통신망에 관한 연구)

  • Kang, Heau-Jo
    • Journal of Advanced Navigation Technology
    • /
    • v.15 no.4
    • /
    • pp.585-590
    • /
    • 2011
  • In the past few years, M2M (Machine-to-Machine) applications have become a hot topic in the wireless industry. While M2M applications can be used for many purposes (smart homes, smart metering/electricity meter reading, fleet management, mobile workforce, automobile insurance, vending machines, etc), and in many sectors (healthcare, agriculture, commercial, industrial, retail, utility, etc.), smart metering applications or smart grids present the biggest growth potential in the M2M market today. M2M platform is the future ubiquitous network technologies which provide the integrated service with the networks and devices. The promising technologies to tackle these problems are the Semantic technologies, for interoperability, and the Agent technologies for management of complex systems. In this paper the information communication technique based on the disaster prevention system's for the M2M, concepts and its requirement technology and application are studied.

GP Modeling of Nonlinear Electricity Demand Pattern based on Machine Learning (기계학습 기반 비선형 전력수요 패턴 GP 모델링)

  • Kim, Yong-Gil
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.3
    • /
    • pp.7-14
    • /
    • 2021
  • The emergence of the automated smart grid has become an essential device for responding to these problems and is bringing progress toward a smart grid-based society. Smart grid is a new paradigm that enables two-way communication between electricity suppliers and consumers. Smart grids have emerged due to engineers' initiatives to make the power grid more stable, reliable, efficient and safe. Smart grids create opportunities for electricity consumers to play a greater role in electricity use and motivate them to use electricity wisely and efficiently. Therefore, this study focuses on power demand management through machine learning. In relation to demand forecasting using machine learning, various machine learning models are currently introduced and applied, and a systematic approach is required. In particular, the GP learning model has advantages over other learning models in terms of general consumption prediction and data visualization, but is strongly influenced by data independence when it comes to prediction of smart meter data.

Information and Communication Technologies for Smart Water Grid Applications

  • Ballhysa, Nobel;Choi, Gyewoon;Byeon, Seongjoon
    • International journal of advanced smart convergence
    • /
    • v.8 no.2
    • /
    • pp.218-226
    • /
    • 2019
  • The use of Information and Communication Technologies (ICT) is the key to operate a change from the traditional manual reading of water meters and sensors to an automated system where high frequency data is remotely collected and analyzed in real time, one of the main components of a Smart Water Grid. The recent boom of ICT offers a wide range of both wired and wireless technologies to achieve this objective. We review and present in this article the most widely recognized technologies and protocols along with their respective advantages, drawbacks and applicability range which can be Home Area Network (HAN), Building Area Network (BAN) or Local/Neighborhood Area Network (LAN/NAN). We also present our findings and we give recommendations on the application of ICT in Smart Water Grids and future work needed.

Analysis of Security Trends in Smart Cities(A focus on grids, buildings, and transportation) (스마트시티(그리드, 빌딩, 교통 중심)보안 동향 분석)

  • Jeom-goo, Kim
    • Convergence Security Journal
    • /
    • v.22 no.5
    • /
    • pp.37-47
    • /
    • 2022
  • The need for smart city is emerging all over the world to solve these urban problems such as urban resource and infrastructure shortage, traffic congestion, energy problems and to preemptively respond to the fourth industrial revolution. The analysis that the security of smart city technology is dangerous is dominant all over the world. In this paper, we analyze the technology, security threats and responses of smart city, which are the main security issues of smart city, limited to smart grid, smart building, and smart traffic. In the future, the analysis of various technologies of smart city construction and the research on cyber security are actively progressing, and this paper is expected to be the beginning of the solution plan.

Optimal Control Approach for a Smart Grid

  • Imen Amdouni;Naziha Labiadh;Lilia El amraoui
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.12
    • /
    • pp.194-198
    • /
    • 2023
  • The current electricity networks will undergo profound changes in the years to come to be able to meet the growing demand for electricity, while minimizing the costs of consumers and producers, etc. The electricity network of tomorrow or even the intelligent « Smart Grids » network will be the convergence of two networks: the electricity network and the telecommunications network. In this context falls our work which aims to study the impact of the integration of energy decentralization into the electricity network. In this sense, we have implemented a new smart grid model where several coexisting suppliers can exchange information with consumers in real time. In addition, a new approach to energy distribution optimization has been developed. The simulation results prove the effectiveness of this approach in improving energy exchange and minimizing consumer purchase costs and line losses.