• Title/Summary/Keyword: Smart Grid1

Search Result 228, Processing Time 0.037 seconds

A Study on Determination of VPP Cloud Charges (VPP 클라우드 요금 산정에 관한 연구)

  • Lim, Chung-Hwan;Kim, Dong-Sub;Moon, Chae-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.2
    • /
    • pp.299-308
    • /
    • 2022
  • Recent, energy transition policies are driving to increase in the number of small photovoltaic(PV) generators. It is difficult for system operators to accurately anticipate the amount of power generated from such small scale PV generation, and this may disrupt dispatch schedules and result in an increase in cost. The need for a Virtual Power Plant(VPP) is emerging as a way of resolving these problems, as it would integrate small-scale PV plants and eliminate uncertainty about the amount of power generated, control voltage, and provide power reserves. In this paper, the cost evaluation methods are described for determination of VPP cloud charges both Net Present Value(NPV) method and Profitability Index(PI) method, the calculated outcomes of the two types of cost evaluation methods are presented in detail. It seems we secure profitability as we get 1.22 of profitability index from calculation results, it may be attractive for the aggregator as NPV is enough for satisfying profitability.

An early warning and decision support system to reduce weather and climate risks in agricultural production

  • Nakagawa, Hiroshi;Ohno, Hiroyuki;Yoshida, Hiroe;Fushimi, Erina;Sasaki, Kaori;Maruyama, Atsushi;Nakano, Satoshi
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.303-303
    • /
    • 2017
  • Japanese agriculture has faced to several threats: aging and decrease of farmer population, global competition, and the risk of climate change as well as harsh and variable weather. On the other hands, the number of large scale farms is increasing, because farm lands have been being aggregated to fewer numbers of farms. Cost cutting, development of efficient ways to manage complicatedly scattered farm lands, maintaining yield and quality under variable weather conditions, are required to adapt to changing environments. Information and communications technology (ICT) would contribute to solve such problems and to create innovative technologies. Thus we have been developing an early warning and decision support system to reduce weather and climate risks for rice, wheat and soybean production in Japan. The concept and prototype of the system will be shown. The system consists of a weather data system (Agro-Meteorological Grid Square Data System, AMGSDS), decision support contents where information is automatically created by crop models and delivers information to users via internet. AMGSDS combines JMA's Automated Meteorological Data Acquisition System (AMeDAS) data, numerical weather forecast data and normal values, for all of Japan with about 1km Grid Square throughout years. Our climate-smart system provides information on the prediction of crop phenology, created with weather forecast data and crop phenology models, as an important function. The system also makes recommendations for crop management, such as nitrogen-topdressing, suitable harvest time, water control, pesticide spray. We are also developing methods to perform risk analysis on weather-related damage to crop production. For example, we have developed an algorism to determine the best transplanting date in rice under a given environment, using the results of multi-year simulation, in order to answer the question "when is the best transplanting date to minimize yield loss, to avoid low temperature damage and to avoid high temperature damage?".

  • PDF

Development of Remote Monitoring and Control Device of 50KW Photovoltaic System (50KW 태양광발전의 원격 감시제어시스템에 관한 연구)

  • Park, Jeabum;Kim, Byungmok;Shen, Jian;Rho, Daeseok
    • Journal of the Korea Convergence Society
    • /
    • v.2 no.3
    • /
    • pp.7-14
    • /
    • 2011
  • This paper deals with the efficient management for the intelligent distribution system related with the renewable energy sources, using the wire-wireless monitoring and control device. This device is mainly composed of 2 sections. One is monitoring device with the Autobase S/W and the other is control device using PLC. This paper proposes a wire and wireless monitoring and control device which can monitor and control the 50Kw PV system installed remotely (about 1Km) in the campus of the Korea University of Technology and Education. By the analysis of PV output characteristic using the device proposed in this paper, it is confirmed that the device can contribute the maintenance of PV system and also the establishment of Smart Grid.

Deep Neural Network Model For Short-term Electric Peak Load Forecasting (단기 전력 부하 첨두치 예측을 위한 심층 신경회로망 모델)

  • Hwang, Heesoo
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.5
    • /
    • pp.1-6
    • /
    • 2018
  • In smart grid an accurate load forecasting is crucial in planning resources, which aids in improving its operation efficiency and reducing the dynamic uncertainties of energy systems. Research in this area has included the use of shallow neural networks and other machine learning techniques to solve this problem. Recent researches in the field of computer vision and speech recognition, have shown great promise for Deep Neural Networks (DNN). To improve the performance of daily electric peak load forecasting the paper presents a new deep neural network model which has the architecture of two multi-layer neural networks being serially connected. The proposed network model is progressively pre-learned layer by layer ahead of learning the whole network. For both one day and two day ahead peak load forecasting the proposed models are trained and tested using four years of hourly load data obtained from the Korea Power Exchange (KPX).

Analysis of Switching Surge Over-voltage in AC/DC Hybrid Transmission Lines (AC/DC 병가선로의 개폐서지 과전압 해석)

  • Yoo, Seong-Soo;Shin, Koo-Yong;Moon, Chae-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.3
    • /
    • pp.459-466
    • /
    • 2022
  • Switching surges are a common type of phenomenon that occur on any sort of power system network. These are more pronounced on long transmission lines and in high voltage converter stations. At AC/DC hybrid transmission lines, the insulation coordination of such lines is mainly dictated by the peak level of switching surges, the most dangerous of which include three phase line energization and AC/DC converter station. The power system structure consist of AC/DC hybrid transmission lines which is combination of AC 765kV and ±500kV HVDC 1 bipole system for contingency analysis. The power system under study and its components are simulated using EMTDC software package, the effects of the various AC/DC mixing power lines are reviewed. The developed models of EMTDC conversion lines based on combination of AC/DC system are simulated and the characteristics of switching surge over-voltage from its results are discussed.

A 0.18-μm CMOS Baseband Circuits for the IEEE 802.15.4g MR-OFDM SUN Standard (IEEE 802.15.4g MR-OFDM SUN 표준을 지원하는 0.18-μm CMOS 기저대역 회로 설계에 관한 연구)

  • Bae, Jun-Woo;Kim, Chang-Wan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.3
    • /
    • pp.685-690
    • /
    • 2013
  • This paper has proposed a multi-channel and wide gain-range baseband circuit blocks for the IEEE 802.15.4g MR-OFDM SUN systems. The proposed baseband circuit blocks consist of two negative-feedback VGAs, an active-RC 5th-order chebyshev low-pass-filter, and a DC-offset cancellation circuit. The proposed baseband circuit blocks provide 1 dB cut-off frequencies of 100 kHz, 200 kHz, 400 kHz, and 600 kHz respectively, and achieve a wide gain-range of +7 dB~+84 dB with 1 dB step. In addition, a DC-offset cancellation circuit has been adopted to mitigate DC-offset problems in direct-conversion receiver. Simulation results show a maximum input differential voltage of $1.5V_{pp}$ and noise figure of 42 dB and 37.6 dB at 5 kHz and 500 kHz, respectively. The proposed I-and Q-path baseband circuits have been implemented in $0.18-{\mu}m$ CMOS technology and consume 17 mW from a 1.8 V supply voltage.

Design of High Efficiency Permanent Magnet Synchronous Generator for Application of Waste Heat Generation ORC System (폐열발전 ORC 시스템 적용을 위한 고효율 영구자석형 동기발전기 설계)

  • Yeong-Jung Kim;Seung-Jin Yang;Chae-Joo Moon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.1
    • /
    • pp.45-52
    • /
    • 2023
  • The power generation method using expensive diesel has operation problems such as high cost diesel generator and a lack of reserved power due to increase of power demand in some islands, requiring expansion of power generation facilities. To solve this problems, it is necessary to improve the efficiency of power generation facilities through an ORC(Organic Rankin Cycle) system application that uses waste heat as a heat source. Therefore, localized application technology of price competitive and highly reliable ORC power generation system is needed, and optimization technology of generators is having great effect, so this study performed two generator designs to get a high-efficiency generator with an optimized 30kW output. The comparison of simulation data for two designed models showed that a generator with SPM factor of 46.2% had an efficiency of 92.1% and a power ouput of about 23.2kW based on 12,000rpm, a generator with SPM factor of 44.46%, had a power output of 27.9kW and efficiency of 93.6% based on above rpm. For the verification of improved design model with SPM factor of 44.46%, the prototype test system with 110kW motor dynamometer was installed and got to the efficiency of 92.08% with conditions of the rated capacity 25kW at 12,000rpm, the test results of prototype generator showed the validity of generator design.

Design of Submarine Cable for Capacity Extension of Power Line (전력선 용량증대를 위한 해저케이블 설계)

  • Son, Hong-Chul;Moon, Chae-Joo;Kim, Dong-Sub
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.1
    • /
    • pp.77-84
    • /
    • 2022
  • A submarine power cable is a transmission cable for carrying electric power below the surface of the water. Recently, submarine cables transfer power from offshore renewable energy schemes to shore, e.g. wind, wave and tidal systems, and these cables are either buried in the seabed or lie on the ocean floor, depending on their location. Since these power cables are used in the extreme environments, they are made to withstand in harsh conditions and temperatures, and strong currents. However, undersea conditions are severe enough to cause all sorts of damage to offshore cables, these conditions result in cable faults that disrupt power transmission. In this paper, we explore the design criteria for such cables and the procedures and challenges of installation, and cable transfer splicing system. The specification of submarine cable designed with 3 circuits of 154kV which is composed of the existing single circuit and new double circuits, and power capacity of 100MVA per cable line. The determination of new submarine cable burial depth and cable arrangement method with both existing and new cables are studied. We have calculated the permission values of cable power capacity for underground route, the values show the over 100MW per cable line.

Creation of Actual CCTV Surveillance Map Using Point Cloud Acquired by Mobile Mapping System (MMS 점군 데이터를 이용한 CCTV의 실질적 감시영역 추출)

  • Choi, Wonjun;Park, Soyeon;Choi, Yoonjo;Hong, Seunghwan;Kim, Namhoon;Sohn, Hong-Gyoo
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_3
    • /
    • pp.1361-1371
    • /
    • 2021
  • Among smart city services, the crime and disaster prevention sector accounted for the highest 24% in 2018. The most important platform for providing real-time situation information is CCTV (Closed-Circuit Television). Therefore, it is essential to create the actual CCTV surveillance coverage to maximize the usability of CCTV. However, the amount of CCTV installed in Korea exceeds one million units, including those operated by the local government, and manual identification of CCTV coverage is a time-consuming and inefficient process. This study proposed a method to efficiently construct CCTV's actual surveillance coverage and reduce the time required for the decision-maker to manage the situation. For this purpose, first, the exterior orientation parameters and focal lengths of the pre-installed CCTV cameras, which are difficult to access, were calculated using the point cloud data of the MMS (Mobile Mapping System), and the FOV (Field of View) was calculated accordingly. Second, using the FOV result calculated in the first step, CCTV's actual surveillance coverage area was constructed with 1 m, 2 m, 3 m, 5 m, and 10 m grid interval considering the occluded regions caused by the buildings. As a result of applying our approach to 5 CCTV images located in Uljin-gun, Gyeongsnagbuk-do the average re-projection error was about 9.31 pixels. The coordinate difference between calculated CCTV and location obtained from MMS was about 1.688 m on average. When the grid length was 3 m, the surveillance coverage calculated through our research matched the actual surveillance obtained from visual inspection with a minimum of 70.21% to a maximum of 93.82%.

A Case Study on the Implementation of Integrated Operation System of the Nakdong River Estuary Barrage Due to the Drainage Gate Extension (낙동강 하굿둑의 배수문 증설에 따른 통합운영시스템의 구축 사례에 대한 연구)

  • Kim, Seokju;Lim, Taesoo;Kim, Minsoo
    • The Journal of Society for e-Business Studies
    • /
    • v.20 no.1
    • /
    • pp.183-199
    • /
    • 2015
  • Due to the Four Major Rivers Restoration Project, Nakdong River Estuary Barrage's designed flood quantity has been largely increased, and this has caused to construct several drainage gates at the right side of Eulsukdo island to secure the safety of downstream river area. For successful functioning of Nakdong River Estuary Barrage, such as flood control, disaster prevention, and the securing of sufficient water capacity, drainage gates at the both sides of island have to operate systematically and reliably. To manage this under restricted personnel and resources, we have implemented the IOS (Integrated Operation System) by integrating previous facilities and resources via information and communication technologies. The IOS has been designed to have higher availability and fault tolerance to function continuously even with the partial system's failure under the emergency situation like flood. Operators can use the system easily and acknowledge alarms of facilities through its IWS (Integrated Warning System) earlier. Preparing for Integrated Water Resources Management and Smart Water Grid, the architecture of IOS conformed to open system standards which will be helpful to link with the other systems easily.