• Title/Summary/Keyword: Smart Grid Network

Search Result 239, Processing Time 0.042 seconds

An Electric Load Forecasting Scheme with High Time Resolution Based on Artificial Neural Network (인공 신경망 기반의 고시간 해상도를 갖는 전력수요 예측기법)

  • Park, Jinwoong;Moon, Jihoon;Hwang, Eenjun
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.6 no.11
    • /
    • pp.527-536
    • /
    • 2017
  • With the recent development of smart grid industry, the necessity for efficient EMS(Energy Management System) has been increased. In particular, in order to reduce electric load and energy cost, sophisticated electric load forecasting and efficient smart grid operation strategy are required. In this paper, for more accurate electric load forecasting, we extend the data collected at demand time into high time resolution and construct an artificial neural network-based forecasting model appropriate for the high time resolution data. Furthermore, to improve the accuracy of electric load forecasting, time series data of sequence form are transformed into continuous data of two-dimensional space to solve that problem that machine learning methods cannot reflect the periodicity of time series data. In addition, to consider external factors such as temperature and humidity in accordance with the time resolution, we estimate their value at the time resolution using linear interpolation method. Finally, we apply the PCA(Principal Component Analysis) algorithm to the feature vector composed of external factors to remove data which have little correlation with the power data. Finally, we perform the evaluation of our model through 5-fold cross-validation. The results show that forecasting based on higher time resolution improve the accuracy and the best error rate of 3.71% was achieved at the 3-min resolution.

Smart meter data transmission device and power IT system using LTE and IoT technologies (LTE와 IoT 기술을 이용한 스마트미터 데이터 전송장치와 전력 IT 시스템)

  • Kang, Ki-Beom;Kim, Hong-Su;Jwa, Jeong-Woo;Kim, Ho-Chan;Kang, Min-Jae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.10
    • /
    • pp.117-124
    • /
    • 2017
  • A Smart Grid is a system that can efficiently use energy by exchanging real-time information in both directions between a consumer and a power supplier using ICT technology on an existing power network. DR(Demand response) is an arrangement in which electricity users can sell the electricity they save to the electricity market when the price of electricity is high or the power system is crisis. In this study, we developed a power meter data transmission device and power IT system that measure the demand information in real-time using a smart meter and transmit it to a cloud server. The power meter data transmission device developed in this study uses alight sensor connected to a Raspberry Pi 3 to measure the number of blinking lamps on the KEPCO meter per unit of power, in order to provide reliable data without any measurement errors with respect to the KEPCO power data. The power measurement data transmission device uses the standard communication protocol, OpenADR 2.0b. The measured data is transmitted to the power IT system, which consists of the VEN, VTN, and calculation program, via the LTE WiFi communication network and stored in its MySQL DB. The developed power measurement data transmission device issues a power supply instruction and performs a peak reduction DR when a power system crisis occurs. The developed power meter data transmission device has the advantage of allowing the user to adjust it every 1 minute, where as the existing smart metering time is fixed at once every 15 minutes.

Study of digital transmission for ubiquitous networking based on power line communication (전력선통신 기반 유비쿼터스 네트워킹을 위한 디지털 신호 전송에 관한 연구)

  • Kim, Ji-Hyoung;Yun, Ji-Hun;Seol, Dong-Ho;Kim, Kwan-Woong;Kim, Yong-K.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.480-481
    • /
    • 2009
  • In the paper we study for the ubiquitous networking based on power line communication technology with digital signal transmission. The necessity of research for using resources in the network effectively is being increase as network to use the PLC with smart grid networking. The data rate has compared with implemented modem 250Mbps in the pixel resolution and bandwidth, which has degraded with 80%. We also proposed for design of high-definition digital signal transceiver, which has used in the network between digital multimedia with PLC. Using resources in the network effectively can be also verified with this research.

  • PDF

M2M Gateway based on CoAP in SG Environment (SG 환경에서 CoAP 기반 M2M 게이트웨이)

  • Shin, In-Jae;Park, Jee-Won;Lee, Sang-Hoon;Song, Byung-Kwen
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.47-48
    • /
    • 2015
  • As the power system develops rapidly into a smarter and more flexible state, so must the communication technologies that support it. Machine to machine (M2M) communication in Smart Grid environment has been discussed in European Telecommunications Standards Institute (ETSI). The power system is not easily replaceable, due to system replacement cost. The M2M gateway is required in other to improve interoperability in M2M environment. The Distributed Network Protocol 3.0 (DNP3.0) is the most important standard in the SCADA systems for the power. It has been used for device data collection/control in Substation Systems, Distribution Automation System. If the DNP3.0 data model is combined with a set of contemporary web protocols, it can result in a major shift. We selected Constrained Application Protocol (CoAP) based on RESTful as M2M protocol. It is a specialized web transfer protocol for use with constrained nodes and constrained networks. We have used the OPNET Modeler 17.1 in order to verity the SOAP versus CoAP. In this paper, we propose the CoAP-based M2M Gateway to Distribution Automation system using DNP3.0 in Smart Grid Environment.

  • PDF

An Optimal Power Scheduling Method Applied in Home Energy Management System Based on Demand Response

  • Zhao, Zhuang;Lee, Won Cheol;Shin, Yoan;Song, Kyung-Bin
    • ETRI Journal
    • /
    • v.35 no.4
    • /
    • pp.677-686
    • /
    • 2013
  • In this paper, we first introduce a general architecture of an energy management system in a home area network based on a smart grid. Then, we propose an efficient scheduling method for home power usage. The home gateway (HG) receives the demand response (DR) information indicating the real-time electricity price, which is transferred to an energy management controller (EMC). Referring to the DR, the EMC achieves an optimal power scheduling scheme, which is delivered to each electric appliance by the HG. Accordingly, all appliances in the home operate automatically in the most cost-effective way possible. In our research, to avoid the high peak-to-average ratio (PAR) of power, we combine the real-time pricing model with the inclining block rate model. By adopting this combined pricing model, our proposed power scheduling method effectively reduces both the electricity cost and the PAR, ultimately strengthening the stability of the entire electricity system.

Study on Construction and operation of the Smart Grid Communication Network (스마트그리드 통신망 구축 및 운영방안 연구)

  • Yang, Ho-Wook;Hwang, Woo-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.139-140
    • /
    • 2011
  • 스마트그리드 통신망은 발전, 송전, 배전, 소비자 등의 각 도메인들이 상호운영성을 확보할 수 있도록 시스템과 시스템, 시스템과 단말, 단말과 단말간에 유무선 통합통신망을 구축하는 것이다. 현재 제주도 실증단지 스마트그리드 통신망은 기존 송전선로 OPGW와 4개 배전선로에 첨가 광케이블을 이용하여 각 시스템이 연계될 수 있도록 구축했다. 이에 현재 설치된 현황을 살펴보고 미래 스마트그리드로 가기 위한 통신망 구축과 운영방안을 제시하고자 한다.

  • PDF

Design Plan for Communication Network of Power IT Test-Bed (전력IT 실증플랜트 통신망 설계 방안)

  • Yang, Ho-Wook
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.48_49
    • /
    • 2009
  • 국가 전략과제로 수행중인 전력IT 10대과제의 실증을 통해 연구개발 산출물의 실용화와 레퍼런스로서의 역할을 수행하고자 실계통과 연계가능한 전력 IT실증플랜트의 성공적인 구축이 요구되고 있다. 이에 본 논문에서는 통신요구조건의 분석 과 전력IT과제 성과물이 가지고 있는 통신요소을 반영하여 통합적인 실증되기 위한 최적의 통신망 구축설계가 되도록 방안을 제시하고자 한다.

  • PDF

Calculation of Distribution Network Charging for DG Embedded Distribution System (분산전원 투입을 고려한 배전망 이용요금 산정에 관한 연구)

  • Hwang, Seok-Hyun;Kim, Mun-Kyeom;Park, Jong-Keun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.4
    • /
    • pp.513-521
    • /
    • 2012
  • With the advent of smart grid, distribution network charges have been one of keystones of ongoing deregulation and privatization in power industries. This paper proposes a new charging methodology to allocate the existing distribution network cost with an aim of reflecting the true cost and benefit of network customers, especially of distribution generator (DG). The proposed charging methodology separates distribution network costs due to the respective real and reactive power flows. The costs are then allocated to network users according to each charge for the actual line capacity used and available capacity. This distribution network charging model is able to provide the economic signals to reward network users who are contributing to better power factors, while penalizing customers who worsen power factors. The proposed method is shown on IEEE 37 bus system for distribution network, and then the results are validated through the comparison with the MW-Miles and MVA-Miles methods. The charges derived from the proposed method can provide appropriate incentives/penalties to network customers to behave in a manner leading to a better network condition.

Effect of Interference from DC Power Supply on Power Line Communication Channel (전력선 통신 채널에서 직류전원 공급장치의 간섭 영향)

  • Kim, Sungeon;Jeon, Taehyun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.5
    • /
    • pp.111-115
    • /
    • 2014
  • Power line communications can be utilized to build up the data transmission network wherever the electricity is available. This type of communication system could provide a basis for the network construction in many application areas which include the smart grid and home networks. On the other hand the power line communication is vulnerable to various types of interferences and noises. Also, its channel characteristics are constantly changing depending on the type and the amount of electrical loads connected to the network. Especially, the usage of DC power supply has been increased due to the explosive expansion of smart devices in our daily lives which result in the increased level of interferences on the power line channel. In this paper, the effect of the operation of the DC power supplies on the channel characteristics and the data transmission performance is analyzed through the experiments.

Power Control and Ground Fault Simulations for a Distribution System with a Fuel Cell Power Plant

  • Hwang, Jin-Kwon;Choi, Tae-Il
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.7
    • /
    • pp.9-19
    • /
    • 2010
  • Fuel cell (FC) distributed generation (DG) is gradually becoming more attractive to mainstream electricity users as capacity improves and costs decrease. New technologies including inverters are becoming available to provide a uniform standard interconnection of DGs with an electric power system. Some of the operating conflicts and the effect of DG on power quality are addressed and investigated through simulations on a real distribution network with an FC power plant. The results of these simulations have proved load tracking capability following the real and reactive power change of the load and have shown the flow of overcurrent from an FC power plant during the ground fault of a distribution line.