• Title/Summary/Keyword: Smart Grid Infrastructure

Search Result 90, Processing Time 0.023 seconds

A Study of an Efficient ZigBee Address Assignment Scheme for Home Area Networks of Smart Grid

  • Choi, Dongmin;Chung, Ilyong
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.5
    • /
    • pp.566-576
    • /
    • 2013
  • In Home Area Network (HAN) of the smart grid, Power Line Communication (PLC) technology and ZigBee communication technology can be used in the communication among the Advanced Metering Infrastructure (AMI) devices. However, according to performance evaluation results of the PLC technology, we find that using the PLC technology is unsuitable for the remote meter reading service. It is worth noting that some parts of the PLC are converted to the ZigBee communication technology in Jeju, Korea. Compared with PLC, ZigBee has no restriction of the place, where the equipments can be freely set up, due to the advantage of radio communication. However, number of usable devices will impact the network performance which is depended on the address assignment. In addition, due to the restriction of transmission range among devices, it is difficult to apply the ZigBee address assignment method to the practical circumstance. In this paper, we examine the previous ZigBee address assignment schemes and the corresponding routing algorithms, and propose a novel address assignment scheme compared with the existing methods, the performance of the proposed one is improved. In particular, evaluation results show that the proposed scheme reduces the average number of hop count, the transfer time and the processing time.

A Study on Security of AMI(Advanced Metering Infrastructure) in SMARTGRID (스마트 그리드에서의 AMI 보안에 관한연구)

  • Kim, Yeoun-Soo;Kim, Jin-Cheol;Ko, Jong-Bin;Shon, Tae-Shik
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.6
    • /
    • pp.1014-1023
    • /
    • 2012
  • Recently with improvement of SMART Grid, AMI network security has been affecting the environment for Electric information and communication. The system and communication protection consists of steps taken to protect the AMI components and the communication links between system components from cyber intrusions. The addition of two way communications between SUN and HAN introduces additional risk for unauthorized access to the AMI system. In this paper, we propose new AMI device authentication infrastructure, key establishment and security algorithm based on public key encryption to solve AMI network security problems.

Policy and Strategy Implications of Smart Electricity Distribution Technologies in the Perspective of IT Ecosystem (스마트 배전의 경쟁전략 및 정책 시사점: IT Ecosystem의 관점에서)

  • Kim, Tae-Ha;Park, Chan-Hi
    • Information Systems Review
    • /
    • v.12 no.1
    • /
    • pp.189-207
    • /
    • 2010
  • We applied IT ecosystem analysis to Smart Grid system in this paper and thereby compared various arguments about Smart Grid technologies against the reality of the power generation and distribution in South Korea with a special attention to the power distribution side. Our work attempts to propose policy implications in the government-level based on a firm-level analysis using the framework of the competitive strategy and advantage. The Smart Grid initiative is expected to enhance the efficiency in the power generation and distribution. In addition, the Smart Grid initiative aims at capturing the opportunities in the electric power business such as parts, components, supplies, and system products in the global arena. Prerequisites of smart distribution system include building infrastructure based on smart distribution parts, information systems, communication technologies, and developing various application programs and interfaces that would interact with the consumers. Consumers are expected to play an integral role by changing their consumption patterns in response to dynamic pricing and quality choices enabled by the smart distribution technologies. In order to induce the consumers to participate actively in the program, firms and policy makers should consider providing consumers economic incentives and proper education for better understanding of new technologies. Our work helps policy makers and firm better understand the nature of technology and stakeholders for the successful implementation of smart distribution technologies.

Leakage detection and management in water distribution systems

  • Sangroula, Uchit;Gnawali, Kapil;Koo, KangMin;Han, KukHeon;Yum, KyungTaek
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.160-160
    • /
    • 2019
  • Water is a limited source that needs to be properly managed and distributed to the ever-growing population of the world. Rapid urbanization and development have increased the overall water demand of the world drastically. However, there is loss of billions of liters of water every year due to leakages in water distribution systems. Such water loss means significant financial loss for the utilities as well. World bank estimates a loss of $14 billion annually from wasted water. To address these issues and for the development of efficient and reliable leakage management techniques, high efforts have been made by the researchers and engineers. Over the past decade, various techniques and technologies have been developed for leakage management and leak detection. These include ideas such as pressure management in water distribution networks, use of Advanced Metering Infrastructure, use of machine learning algorithms, etc. For leakage detection, techniques such as acoustic technique, and in recent yeats transient test-based techniques have become popular. Smart Water Grid uses two-way real time network monitoring by utilizing sensors and devices in the water distribution system. Hence, valuable real time data of the water distribution network can be collected. Best results and outcomes may be produced by proper utilization of the collected data in unison with advanced detection and management techniques. Long term reduction in Non Revenue Water can be achieved by detecting, localizing and repairing leakages as quickly and as efficiently as possible. However, there are still numerous challenges to be met and future research works to be conducted in this field.

  • PDF

A Study on the V2G Application using the Battery of Electric Vehicles under Smart Grid Environment (스마트그리드 환경에서 전기자동차 배터리를 이용한 V2G의 활용방안에 관한 연구)

  • Choi, Jin-Young;Park, Eun-Sung
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.63 no.1
    • /
    • pp.40-45
    • /
    • 2014
  • This study examines the system and process of battery stored energy in vehicles and suggest the effective area for the use of V2G(vehicle-to-grid) from Jeju Smart Grid Demonstration Project. V2G means technology of electric power transmission from the battery of electric-drive vehicles to state grid. As for the increasing of effectiveness for demand-side control, V2G is a very good alternative. In the U.S., the utilization of electric vehicles is under 40% on average. In this case, we can use he battery of electric vehicle as role of frequency regulation or generator of demand-side resource. V2G, which is the element of Smart Transportation, consists of electric vehicle battery, BMS(battery management system), OBC(on-board charger), charging infrastructure, NOC(network operating center) and TOC(total operation center). V2G application has been tested for frequency regulation to secure the economical efficiency in the United States. In this case, the battery cycle life is not verified its disadvantage. On the other hand, Demand Response is required by low c-rate of battery in electric vehicle and It can be small impact on the battery cycle life. This paper concludes business area of demand response is more useful than frequency regulation in V2G application of electric vehicles in Korea. This provides the opportunity to create a new business for power grid administrator with VPP(virtual power plant).

A Study on the Implementation of Geographic Information System for an Intelligent Power Distribution Network with Location Informations of Power Line Communication-based Automatic Meter Reading System (전력선통신 기반 저압원격검침 시스템의 공간 정보를 활용한 지능형 배전망 지리정보시스템 구축에 관한 연구)

  • Seo, Chung-Ki;Lee, Seung-Gol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.3
    • /
    • pp.365-369
    • /
    • 2015
  • In this paper, geographic information system(GIS) for an intelligent power distribution network was implemented with location informations acquired from automatic meter reading system, where the location informations of power line communication(PLC) modems installed at customer side were collected at data concentration units(DCUs) of headend equipment via PLC and then were transmitted to front end processor server. By displaying the connection status of the power distribution network on GIS map, operation of advanced metering infrastructure(AMI) or management of power grid system could be performed intuitionally and in real time, because the configuration state of the power grid could be easily monitored. The feasibility of the proposed system was confirmed with the especially constructed laboratory-level test bed and the verification test of the system will be carried out for a real power distribution network.

Standard Strategies for Convergence Industries: A Case of Clash between Electric Vehicle Charging Standards and Smart Grid Communication Standards (미래 융합산업 표준 전략: 전기 자동차 충전 표준과 스마트그리드 통신 표준 충돌 사례)

  • Huh, Joon;Lee, Heejin
    • Journal of Technology Innovation
    • /
    • v.23 no.3
    • /
    • pp.137-167
    • /
    • 2015
  • Based on the stakeholder theory, this paper analyzes a clash of standards in Korea's Electric Vehicle(EV) market, particularly between an EV charging standard and a smart grid communication standard in 2012~2013. For charging, EV is connected with the electric power grid and simultaneously exchanges data regarding the charging status. When EV is connected with the power grid, a clash between two standards may arise. It actually happened when BMW entered into the Korean EV market with the DC Combo charging system. In that course, the frequency interference occurred between the EV data communication technology adopted by BMW and the AMI(Advanced Metering Infrastructure) for the smart grid system in Korea. Standardization of Korea's EV charging systems was required to solve this problem. However, it had been delayed due to the confrontation between various stakeholders involved in the process of standardization. It lasted until the DC combo was accepted as one of the Korea EV charging standards(KSAE SAE 1772-2040, 2014.1) by KSAE(The Korea Society of Automotive Engineers) in January 2014. This is an interesting case in the age of convergence. As it deals with the standard competition not among EV standards, but a clash between the EV industry and the smart grid, i.e. electric power industry, it addresses the necessity to consider standardization processes between different industries. This study draws on the stakeholder theory to analyse the dynamics of the standard clash between EV charging systems and the smart grid system, which is a unique example of standard clash between different industries. We expect such clashes to increase in the age of convergence.

A Design of an AMI System Based on an Extended Home Network for the Smart Grid (스마트 그리드를 위한 확장 홈 네트워크 기반의 AMI 시스템 설계)

  • Hwang, Yu-Jin;Lee, Kwang-Hui
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.49 no.7
    • /
    • pp.56-64
    • /
    • 2012
  • A smart grid is the next generation power grid which combines the existing power grid with information technology, so an energy efficient power grid can be provided. In this paper, in order to build an efficient smart grid an AMI system, which gears with the existing home network and provides an user friendly management function, is proposed. The proposed AMI system, which is based on an extended home network, consists of various functional units; smart meters, communication modules, home gateway, security modules, meter data management modules (MDMM), electric power application modules and so on. The proposed home network system, which can reduce electric power consumption and transmit data more effectively, is designed by using IEEE 802.15.4. The extended home gateway can exchange energy consumption information with the outside management system via web services. The proposed AMI system is designed to enable two-way communication between the home gateway and MDMM via the Internet. The AES(Advanced Encryption Standard) algorithm, which is a symmetric block cipher algorithm, is used to ensure secure information exchange. Even though the results in this study could be limited to our experimental environment, the result of the simulation test shows that the proposed system reduces electric power consumption by 4~42% on average compared to the case of using no control.

AMI 근거리 통신기술 분석

  • Myeong, No-Gil;Kim, Yeong-Hyeon;Kim, Myeong-Su;Park, Byeong-Seok
    • Information and Communications Magazine
    • /
    • v.30 no.10
    • /
    • pp.93-100
    • /
    • 2013
  • 선진국 주요 전력사는 단방향 전력망에 정보통신기술을 접목하여 전력공급자와 소비자가 양방향 실시간 정보를 교환함으로써 전력설비운영 최적화와 전력 수요관리 서비스를 통해서 전기에너지 사용 효율을 극대화할 수 있는 SmartGrid 핵심 application인 AMI(Advanced Metering Infrastructure)시스템에 대한 연구개발과 대규모 사업화를 추진 중에 있다. 본고에서는 AMI시스템을 구성하고 있는 유 무선 통신망 중에서 규제 없이 누구나 사용가능한 AMI용 근거리 통신기술의 표준화 기술동향과 관련 이슈에 대해 살펴보고자 한다.

Regional Analysis of Load Loss in Power Distribution Lines Based on Smartgrid Big Data (스마트그리드 빅데이터 기반 지역별 배전선로 부하손실 분석)

  • Jae-Hun, Cho;Hae-Sung, Lee;Han-Min, Lim;Byung-Sung, Lee;Chae-Joo, Moon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.6
    • /
    • pp.1013-1024
    • /
    • 2022
  • In addition to the assessment measure of electric quality levels, load loss are also a factor in hindering the financial profits of electrical sales companies. Therefore, accurate analysis of load losses generated from distributed power networks is very important. The accurate calculation of load losses in the distribution line has been carried out for a long time in many research institutes as well as power utilities around the world. But it is increasingly difficult to calculate the exact amount of loss due to the increase in the congestion of distribution power network due to the linkage of distributed energy resources(DER). In this paper, we develop smart grid big data infrastructure in order to accurately analyze the load loss of the distribution power network due to the connection of DERs. Through the preprocess of data selected from the smart grid big data, we develop a load loss analysis model that eliminated 'veracity' which is one of the characteristics of smart grid big data. Our analysis results can be used for facility investment plans or network operation plans to maintain stable supply reliability and power quality.