• Title/Summary/Keyword: Smart Greenhouse

Search Result 146, Processing Time 0.024 seconds

Study on the Development of Devices for Smart HACCP Systems with WCDMA-LTE Based (WCDMA-LTE 기반의 Smart HACCP 시스템 구축을 위한 단말기 개발에 관한 연구)

  • Jang, Moon-Kee;Park, Jin-Soo
    • Journal of Advanced Navigation Technology
    • /
    • v.18 no.5
    • /
    • pp.490-493
    • /
    • 2014
  • To protect the students from food poisoning, in this paper, it is proposed that the Smart HACCP system which based with WCDMA-LTE to monitoring the temperature and humidity of a freezer, a heating cabinet and kitchen instruments at the elementary, junior and high school. After gathering the data, It is compared with a standard food poisoning index to provide more safe food reserves from the server. Then the server send a index to the terminal which is installed in a kitchen at any school to show the current environment. It is need an WCDMA-LTE terminal to realize smart HACCP system that is proposed from this paper. So, the proposed WCDMA-LTE terminal is designed with using a LTE modem included a 424 MHz wireless modem and a bluetooth 4.0 modem to communicate with other terminals. It can be use the monitoring system of a plastic greenhouse or remotely environment control system.

Cloud Platform for Smartfarm (스마트팜을 위한 클라우드 플랫폼)

  • Lee, Meong-hun;Yi, Se-yong;Kim, Joon-yong;Yoe, Hyun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.496-499
    • /
    • 2016
  • The smartfarm is a leader in the Field of environmental monitoring in agriculture. By the use of wireless remote systems, monitoring applications of the smartfarm are able to provide vital information to the farmer wherever he may be. Absentee farmers are finding the ease of viewing the application graphs on their mobile phone is providing them with peace of mind. We design system and technical requirements of service for managing and operating smart-farm based on cloud technology. It describes requirements of cloud technology for monitoring, controlling, managing, and operating cloud-based smart farm. Smart farm system and service with cloud platform contains 3 interfaces and 3 services. In addition, smart-farm using cloud platform could have several cases so it should be established and managed in varying way depending on cultivars, its size and type. This paper will focus the industry's attention on the importance of Open/Standard Cloud platform thereby stimulating the smartfarm in agriculture.

  • PDF

Analysis of Engine Load Factor for a 78 kW Class Agricultural Tractor According to Agricultural Operations (농작업에 따른 78 kW급 농업용 트랙터 엔진 부하율 분석)

  • Baek, Seung Min;Kim, Wan Soo;Baek, Seung Yun;Jeon, Hyeon Ho;Lee, Dae Hyun;Kim, Hyung Kweon;Kim, Yong Joo
    • Journal of Drive and Control
    • /
    • v.19 no.1
    • /
    • pp.16-25
    • /
    • 2022
  • The purpose of this study was to calculate and analyze the engine load factor of major agricultural operations using a 78 kW class agricultural tractor for estimating the emission of air pollutants and greenhouse. Engine load data were collected using controller area network (CAN) communication. Main agricultural operations were selected as plow tillage (PT), rotary tillage (RT), baler operation (BO), loader operation (LO), driving on soil (DS), and driving on concrete (DC). The engine power was calculated using the measured engine load data. A weight factor was applied to load factor for considering usage ratio according to agricultural operations. Weight factors for different agricultural operations were calculated to be 27.4%, 32.9%, 17.5%, 7.7%, 4.5%, and 10.0% for PT, RT, BO, LO, DS, and DC, respectively. As a result of the field test, load factors were 0.74, 0.93, 0.41, 0.23, 0.27, and 0.21 for PT, RT, BO, LO, DS, and DC, respectively. The engine load factor was the highest for RT. Finally, as a result of applying the weight factor for usage ratio of agricultural operations, the integrated engine load factor was estimated to be 0.63, which was about 1.31 times higher than the conventional applied load factor of 0.48. In future studies, we plan to analyze the engine load factor by considering various horsepower and working conditions of the tractor.

A Study on the Effectiveness of Rainwater Recycling to Replace Groundwater in a Smart Farming Greenhouse (스마트팜 운영시 빗물 재활용을 통한 농촌지역 지하수 사용량 대체 효과 실증 연구)

  • Jung-Hyun Yoo;Eun-jeong Kim;Cheol-Ku Youn;Bong Ho Son;KyuHoi Lee;Young-Soo Han
    • Journal of Soil and Groundwater Environment
    • /
    • v.28 no.5
    • /
    • pp.51-58
    • /
    • 2023
  • In this study, an empirical experiment was conducted to assess the feasibility of replacing groundwater with rainwater in melon cultivation using a smart rainwater harvesting system. The rainwater harvesting efficiency was calculated under three different melon cultivation scenarios. After cultivation, the quality of the fruits grown with rainwater and groundwater was compared by examining the weight, degree of sweetness, and flesh hardness of the products. The results revealed that the water quality of the smart rainwater harvesting device was suitable for melon cultivation to provide better hardness and chloride levels than groundwater. It was also estimated that about 40% of the total water demand for full growth of the melon could be supplied by rainwater. The fruit weight and sweetness were equivalent or slightly better for the melons cultivated with rainwater than those cultivated with groundwater. In particular, the flesh hardness was significantly improved by rainwater cultivation. These results collectively suggest that rainwater can be used as a substitute for groundwater to preserve groundwater resources without compromizing the produced fruit quality.

Recent Developments and Field Application of Foreign Waterworks Automatic Meter Reading (국외 상수도 원격검침시스템의 개발 동향 및 현장 적용 사례 고찰)

  • Joo, Jin Chul;Ahn, Hosang;Ahn, Chang Hyuk;Ko, Kyung-Rok;Oh, Hyun-Je
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.12
    • /
    • pp.863-870
    • /
    • 2012
  • The market trends of automatic meter reading associated with smart water meters were investigated. Also, recent developments and field applications of key technology for automatic meter reading associated with smart water meters were analyzed. Smart water meters have been manufactured mostly in United States and Europe and have been expanded their business to Asia. Integrated water management system combining with the additional functions such as real-time consumption metering, cost notification, water conservation, leak detection, water quality monitoring, and flow control have been operated in automatic meter reading. Both water quality and quantity data measured from smart water meters and sensors were transferred to data concentration units through neighborhood area network, and then were transferred to integrated server through wide area network. The data transfer methods were determined by comprehensively considering urban scale, density of smart water meters, power supply and network topologies. Common data collection methods such as fixed network to data concentation units, vehicles drive by, people walk by, and drone fly by have been applied. The automatic meter reading associated with smart water meters are spread throughout the world, and both water and energy savings result in saving the money and reducing the greenhouse gases emission.

Growth of Kale Seedlings Affected by the Control of Light Quality and Intensity under Smart Greenhouse Conditions with Artificial Lights (인공광 스마트온실에서 광질 및 광강도 제어가 케일 실생묘의 생장에 미치는 영향)

  • Heo, Jeong-Wook;Lee, Jae-Su;Lee, Gong-In;Kim, Hyun-Hwan
    • Korean Journal of Environmental Agriculture
    • /
    • v.36 no.3
    • /
    • pp.193-200
    • /
    • 2017
  • BACKGROUND: Plant growth under smart greenhouse (that is plant factory system) conditions of an artificial light type is significantly depending on the artificial light sources such as a fluorescent lamps or Light-Emitting Diodes (LEDs) with specific spectral wavelengths regardless of the outside environmental changes. In this experiment, characteristics on the growth and compound synthesis of kale seedlings affected by light qualities and intensities provided by LEDs were mentioned. METHODS AND RESULTS: The kale seedlings which developed 3~4 true leaves were exposed by fluorescent lamps or LEDs lights of red (R), blue+white (BW), blue+red (BR) with 50 (L) or $100(H){\mu}mol/m^2/s^1$ photosynthetic photon flux (PPF) under hydroponic culture system of deep flow technique for 50 days. Shoot fresh weight increased under the RH, BWH, and BRH treatments with higher PPF. Shoot elongation of the seedlings decreased, and polyphenol synthesis promoted by the higher light intensity conditions. Sugar synthesis in the leaves was above 2 times greater under the RH treatment of monochromic red light quality with $100{\mu}mol/m^2/s^1\;PPF$ than $50{\mu}mol/m^2/s^1\;PPF$. CONCLUSION: The results show that the control of light quality and intensity in the smart greenhouse conditions with artificial lights significantly affects the growth and compound synthesis in the fresh kale leaves with higher culture efficiency compared to the conventional soil culture under greenhouse or field conditions. Researches on the optimum light intensities of the LEDs with special spectral wavelengths are necessary for maximum growth and metabolism in the seedlings.

A Study on Energy Management System of Sport Facilities using IoT and Bigdata (사물인터넷과 빅데이터를 이용한 스포츠 시설 에너지 관리시스템에 관한 연구)

  • Kwon, Yong-Kwang;Heo, Jun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.3
    • /
    • pp.59-64
    • /
    • 2020
  • In the Paris Climate Agreement, Korea submitted an ambitious goal of reducing the greenhouse gas emission forecast (BAU) by 37% by 2030. And as one of the countermeasures, a smart grid, an intelligent power grid, was presented. In order to apply the smart grid, EMS(Energy Management System) needs to be installed and operated in various fields, and the supply is delayed due to the lack of awareness of users and the limitations of system ROI. Therefore, recently, various data analysis and control technologies have been proposed to increase the efficiency of the installed EMS. In this study, we present a measurement control algorithm that analyzes and predicts big data collected by IoT using a SARIMA model to check and operate energy consumption of public sports facilities.

Design of Cloud-Based Data Analysis System for Culture Medium Management in Smart Greenhouses (스마트온실 배양액 관리를 위한 클라우드 기반 데이터 분석시스템 설계)

  • Heo, Jeong-Wook;Park, Kyeong-Hun;Lee, Jae-Su;Hong, Seung-Gil;Lee, Gong-In;Baek, Jeong-Hyun
    • Korean Journal of Environmental Agriculture
    • /
    • v.37 no.4
    • /
    • pp.251-259
    • /
    • 2018
  • BACKGROUND: Various culture media have been used for hydroponic cultures of horticultural plants under the smart greenhouses with natural and artificial light types. Management of the culture medium for the control of medium amounts and/or necessary components absorbed by plants during the cultivation period is performed with ICT (Information and Communication Technology) and/or IoT (Internet of Things) in a smart farm system. This study was conducted to develop the cloud-based data analysis system for effective management of culture medium applying to hydroponic culture and plant growth in smart greenhouses. METHODS AND RESULTS: Conventional inorganic Yamazaki and organic media derived from agricultural byproducts such as a immature fruit, leaf, or stem were used for hydroponic culture media. Component changes of the solutions according to the growth stage were monitored and plant growth was observed. Red and green lettuce seedlings (Lactuca sativa L.) which developed 2~3 true leaves were considered as plant materials. The seedlings were hydroponically grown in the smart greenhouse with fluorescent and light-emitting diodes (LEDs) lights of $150{\mu}mol/m^2/s$ light intensity for 35 days. Growth data of the seedlings were classified and stored to develop the relational database in the virtual machine which was generated from an open stack cloud system on the base of growth parameter. Relation of the plant growth and nutrient absorption pattern of 9 inorganic components inside the media during the cultivation period was investigated. The stored data associated with component changes and growth parameters were visualized on the web through the web framework and Node JS. CONCLUSION: Time-series changes of inorganic components in the culture media were observed. The increases of the unfolded leaves or fresh weight of the seedlings were mainly dependent on the macroelements such as a $NO_3-N$, and affected by the different inorganic and organic media. Though the data analysis system was developed, actual measurement data were offered by using the user smart device, and analysis and comparison of the data were visualized graphically in time series based on the cloud database. Agricultural management in data visualization and/or plant growth can be implemented by the data analysis system under whole agricultural sites regardless of various culture environmental changes.

Using IoT and Apache Spark Analysis Technique to Monitoring Architecture Model for Fruit Harvest Region (IoT 기반 Apache Spark 분석기법을 이용한 과수 수확 불량 영역 모니터링 아키텍처 모델)

  • Oh, Jung Won;Kim, Hangkon
    • Smart Media Journal
    • /
    • v.6 no.4
    • /
    • pp.58-64
    • /
    • 2017
  • Modern society is characterized by rapid increase in world population, aging of the rural population, decrease of cultivation area due to industrialization. The food problem is becoming an important issue with the farmers and becomes rural. Recently, the researches about the field of the smart farm are actively carried out to increase the profit of the rural area. The existing smart farm researches mainly monitor the cultivation environment of the crops in the greenhouse, another way like in the case of poor quality t is being studied that the system to control cultivation environmental factors is automatically activated to keep the cultivation environment of crops in optimum conditions. The researches focus on the crops cultivated indoors, and there are not many studies applied to the cultivation environment of crops grown outside. In this paper, we propose a method to improve the harvestability of poor areas by monitoring the areas with bad harvests by using big data analysis, by precisely predicting the harvest timing of fruit trees growing in orchards. Factors besides for harvesting include fruit color information and fruit weight information We suggest that a harvest correlation factor data collected in real time. It is analyzed using the Apache Spark engine. The Apache Spark engine has excellent performance in real-time data analysis as well as high capacity batch data analysis. User device receiving service supports PC user and smartphone users. A sensing data receiving device purpose Arduino, because it requires only simple processing to receive a sensed data and transmit it to the server. It regulates a harvest time of fruit which produces a good quality fruit, it is needful to determine a poor harvest area or concentrate a bad area. In this paper, we also present an architectural model to determine the bad areas of fruit harvest using strong data analysis.

Survey of ICT Apply to Plastic Greenhouse, Rack·Pinion Adaption to Single Span and CFD Analysis (온실 ICT융복합 실태조사와 복숭아형 랙피니언천창 적용 단동온실 및 CFD 유동해석)

  • Cho, Kyu Jeong;Kim, Ki Young;Yang, Won Mo
    • Journal of Bio-Environment Control
    • /
    • v.24 no.4
    • /
    • pp.308-316
    • /
    • 2015
  • This study was conducted to investigate the situation of ICT apply to plastic greenhouse, and the results be apply to design of new one. A CFD analysis were conducted to monitering the ventilation and energy saving of the single span greenhouse newly designed. The causes of delay to apply ICT to plastic greenhouse are the high cost for installation(24%), insufficiency of after services(19%), often disorder(16%), unskillful management of soft ware(15%), insufficient ICT efficiency(13%) and unsatisfying of income increase(12%). The parts of problem occurred in ICT plastic greenhouse are the structure, actuator, environmental control system and sensor(approximate 14%, respectively), remote control technique(13%), plant management technique(12%), energy saving technique(10%) and utilization of software(8%). In the condition of lateral window closed, the average wind speed changed to slow, but it was faster in the condition of leeward side window opened than in the condition of lee and winward side window opened. The air movement in the condition of lateral window closed occur by air moving fan not by out air. It is not affect the room temperature but effective the uniformity of room temperature. The average temperature of low height greenhouse was uniform than high height one. The average temperature in condition of 3rd curtain opened become same with outside temperature after 2 hours, but take more 5 hours in condition of 3rd curtain closed.