• Title/Summary/Keyword: Smart Floor

Search Result 105, Processing Time 0.031 seconds

Parametric study of SMA helical spring braces for the seismic resistance of a frame structure

  • Ding, Jincheng;Huang, Bin;Lv, Hongwang;Wan, Hongxia
    • Smart Structures and Systems
    • /
    • v.25 no.3
    • /
    • pp.311-322
    • /
    • 2020
  • This paper studies the influence of parameters of a novel SMA helical spring energy dissipation brace on the seismic resistance of a frame structure. The force-displacement relationship of the SMA springs is established mathematically based on a multilinear constitutive model of the SMA material. Four SMA helical springs are fabricated, and the force-displacement relationship curves of the SMA springs are obtained via tension tests. A numerical dynamic model of a two-floor frame with spring energy dissipation braces is constructed and evaluated via vibration table tests. Then, two spring parameters, namely, the ratio of the helical spring diameter to the wire diameter and the pre-stretch length, are selected to investigate their influences on the seismic responses of the frame structure. The simulation results demonstrate that the optimal ratio of the helical spring diameter to the wire diameter can be found to minimize the absolute acceleration and the relative displacement of the frame structure. Meanwhile, if the pre-stretch length is assigned a suitable value, excellent vibration reduction performance can be realized. Compared with the frame structure without braces, the frames with spring braces exhibit highly satisfactory seismic resistance performance under various earthquake waves. However, it is necessary to select an SMA spring with optimal parameters for realizing optimal vibration reduction performance.

EMS Application Effect of Lower Extremities to Improve Static Balance Capability (정적 균형능력 향상을 위한 하지 의류의 EMS 적용 효과)

  • Hwang, Sunkyu;Park, Jinhee;Kim, Jooyong
    • Journal of Fashion Business
    • /
    • v.25 no.4
    • /
    • pp.151-160
    • /
    • 2021
  • The purpose of this study was to investigate whether there were improvements on balance when both ankle-jointed calf muscles and hip muscles, which affect balance capabilities, were activated through taping techniques and EMS. In this study, the One Leg Standing Test, a static balance test, was conducted by experimenting on a flat floor, foam pad, and a stretching board with a gradient of 20 degrees, respectively, to study static balance capabilities in different situations. Nine healthy men in their 20s were measured five times every five minutes considering muscle fatigue, and the difference between each variable was analyzed through post-test using nonparametric statistical analysis. Our results showed an equal increase in static balance capability was similar when EMS was applied only to calf muscles and only to hip muscles. Notably most improvements were seen when wearing calf supporters and taping technology pants, and applying EMS together. It was also found that the difference between EMS electric stimulation and balance capability was greater when wearing and applying supporters and taping technology pants. Based on the results of the present study, a muscle support band and EMS of taping techniques can improve balance capabilities. These findings are expected to form a basis for solutions Improving the balance capabilities

Probabilistic behavior of semi-active isolated buildings under pulse-like earthquakes

  • Oncu-Davas, Seda;Alhan, Cenk
    • Smart Structures and Systems
    • /
    • v.23 no.3
    • /
    • pp.227-242
    • /
    • 2019
  • Seismic isolation systems employ structural control that protect both buildings and vibration-sensitive contents from destructive effects of earthquakes. Structural control is divided into three main groups: passive, active, and semi-active. Among them, semi-active isolation systems, which can reduce floor displacements and accelerations concurrently, has gained importance in recent years since they don't require large power or pose stability problems like active ones. However, their seismic performance may vary depending on the variations that may be observed in the mechanical properties of semi-active devices and/or seismic isolators. Uncertainties relating to isolators can arise from variations in geometry, boundary conditions, material behavior, or temperature, or aging whereas those relating to semi-active control devices can be due to thermal changes, inefficiencies in calibrations, manufacturing errors, etc. For a more realistic evaluation of the seismic behavior of semi-active isolated buildings, such uncertainties must be taken into account. Here, the probabilistic behavior of semi-active isolated buildings under historical pulse-like near-fault earthquakes is evaluated in terms of their performance in preserving structural integrity and protecting vibration-sensitive contents considering aforementioned uncertainties via Monte-Carlo simulations of 3-story and 9-story semi-active isolated benchmark buildings. The results are presented in the form of fragility curves and probability of failure profiles.

Reduced-mass Adaptive TMD for Tall Buildings Damping

  • Weber, Felix;Huber, Peter;Spensberger, Simon;Distl, Johann;Braun, Christian
    • International Journal of High-Rise Buildings
    • /
    • v.8 no.2
    • /
    • pp.117-123
    • /
    • 2019
  • Tall buildings are prone to wind-induced vibrations due to their slenderness whereby peak structural accelerations may be higher than the recommended maximum value. The common countermeasure is the installation of a tuned mass damper (TMD) near the highest occupied floor. Due to the extremely large modal mass of tall buildings and because of the narrow to broad band type of wind excitation the TMD mass may become inacceptable large - in extreme cases up to 2000 metric tons. It is therefore a need to develop more efficient TMD concepts which provide the same damping to the building but with reduced mass. The adaptive TMD concept described in this paper represents a solution to this problem. Frequency and damping of the adaptive TMD are controlled in real-time by semi-active oil dampers according to the actual structural acceleration. The resulting enhanced TMD efficiency allows reducing its mass by up to 20% compared to the classical passive TMD. The adaptive TMD system is fully fail-safe thanks to a smart valve system of the semi-active oil dampers. In contrast to active TMD solutions the adaptive TMD is unconditionally stable and its power consumption on the order of 1 kW is negligible small as controllable oil dampers are semi-active devices. The adaptive TMD with reduced mass, stable behavior and lowest power consumption is therefore a preferable and cost saving damping tool for tall buildings.

A Study of Cooling and Heating Load Changes with Roof Type Solar Panels Installed on Factory Roof (지붕형 태양광발전 패널의 공장 지붕 설치에 따른 냉방 및 난방 부하 변화량 연구)

  • Jo, Ho-Hyeon;Kim, Jung-Min;Kim, Young Il
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.16 no.4
    • /
    • pp.9-15
    • /
    • 2020
  • In this study, effect of reinforced insulation on heating and cooling loads were studied due to installation of PV panels on factory building roof with a floor area of 12,960 m2. For PV panel installation, combination of aluminum, polyurethane, air, polystyrene and steel materials were added to the original roof, which increased thermal insulation performance. Half of the roof were covered with PV panel and the other half without. Temperature and relative humidity were measured for 8 days during summer season for both indoor spaces. PV panel showed the effect of lowering the indoor space temperature by 0.6℃. TRNSYS dynamic simulation showed that with PV panel, cooling load per area is reduced by 1.7 W/m2 and heating by 10.0 W/m2. PV panels installed on building roof not only generate electricity but also can save energy by reducing cooling and heating loads.

Design of Public Transportation Route Guidance System for Wheelchair Users Utilizing Public Data of Seoul City

  • Geumbi, Lee;Humberto, Villalta;Seunghyun, Kim;Kisu, Kim;Jaehyeong, Go;Yongjoo, Jun;Kwang Sik, Kim
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.15 no.1
    • /
    • pp.97-112
    • /
    • 2023
  • The purpose of this study is to design and test a new way of public transportation route guidance system for persons with disabilities, including wheelchair users. The guidance system is smartphone app-based, using, routes that involve disabled-friendly facilities in the vicinity can be searched. A database that contains publicly available data on low-floor bus services, location and extent of disabled-friendly facilities, and suitable subways and stations, was developed for this purpose. The app uses the database to access and query the required information. A pilot study was conducted to test the effectiveness of the guidance system. It was found that the system was able to convey information about the disabled-friendly routes and related guidance information even inside subway stations, effectively. The performance of the system was compared with route guidance services that do not explicitly use data on disabled-friendly services. A notable difference was observed in the travel time estimated by this program and other guidance services. The difference was around 4 to 15 minutes. This is significant savings for persons with disabilities if they use the app and service. The study thus shows that exclusive use of disabled-friendly data in route guidance will bring more benefits for persons with disabilities.

A Study on Portable Weighing Scales Applicable to Poultry Farms (가금류 농장에 적용 가능한 이동식 중량 저울에 관한 연구)

  • Park, Sung Jin;Park, In Ji;Kim, Jin Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.2
    • /
    • pp.155-159
    • /
    • 2022
  • Smart livestock, which combines information and communication technology (ICT) with livestock, can be said to be an effective solution to existing livestock problems such as productivity improvement, odors, and diseases. So far, it has hardly been universalized; thus, it is necessary to develop automation devices to reduce labor by localizing automation devices to expand the distribution of ICT technology to farms, and to advance precise specifications and health management technology using biometric information. Weighing scales currently being used in livestock farms are to prevent the spread of diseases by diagnosis and preparation for AI and other diseases in advance, using information on the growing weight of duck breeding. However, accurate values cannot be obtained due to poor breeding conditions. In this paper, we developed a separate data transmission system kit for the weighing scale and placed the sensor on top of the weighing scale so that the sensor wire is not affected by pollutants or ducks on the floor. A display function was provided, and a method of receiving and analyzing the serial port data of the weighing device, and then transmitting them to the data collection server was implemented.

Development of Automated Driving System of Manual Driving based Cleaning Robot (탑승식 바닥 청소 로봇의 주행 자동화 시스템 개발)

  • Jaewan Koo;Kyon-Mo Yang;Jeonghoon Kwak;Kap-Ho Seo
    • The Journal of Korea Robotics Society
    • /
    • v.19 no.3
    • /
    • pp.311-317
    • /
    • 2024
  • Large-scale three-wheeled cleaning robots are utilized to clean large spaces such as warehouses and manufacturing plants where significant floor contamination occurs. Although there are autonomous cleaning robots, user-operated cleaning robots are often preferred because they are easy to repair and inexpensive. Therefore, workers have to spend extra time on cleaning, which reduces work efficiency. In this paper, we propose an autonomous driving system designed to automate the operation while maintaining the structure of existing cleaning robots. The contributions of this paper are as follows: 1) Hardware modules that control the driving and steering components. 2) A LiDAR-based autonomous driving system and path point generation system considering the mechanical characteristics of the cleaning robot. 3) The proposed system is implemented on an actual cleaning robot and driving tests are performed. As a result, when path planning is performed to cover the cleaning area, the average RMSE for each straight path is 0.0802 m, which is smaller than the minimum cleaning overlap of 0.3 m that occurs during the straight cleaning of the robot. This shows that the proposed system effectively covers the entire cleaning area.

Study on 3D AR of Education Robot for NURI Process (누리과정에 적용할 교육로봇의 가상환경 3D AR 연구)

  • Park, Young-Suk;Park, Dea-Woo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.05a
    • /
    • pp.209-212
    • /
    • 2013
  • The Nuri process of emphasis by the Ministry of Education to promote is standardized curriculum at the national level for the education and care. It is to improve the quality of pre-school education and Ensure a fair starting line early in life and It emphasizes character education in all areas of the window. Nuri the process of development of a the insect robot for the Creativity education Increased the interesting and educational effects. Assembly and the effect on learning of educational content using a VR educational robot using the existing floor assembly using the online website to help assemble and learning raised. Order to take advantage of information technology in the information-based society requires the active interest and motivation in learning, creative learning toddlers learning robot are also needed. A three-dimensional model of the robot, and augmented by linking through the marker, the target marker and the camera relative to the coordinate system of augmented reality, seeking to convert the marker to be used in augmented reality marker patterns within a pre-defined patternto be able to make a decision on what of. The fusion of a smart education through training and reinforcement the educational assembly of the robot in the real world window that is represented by a virtual environment in this paper to present a new form of state-of-the-art smart training, you will want to lay the foundation of the nation through the early national talent nurturing talent.

  • PDF

Seismic behavior of properly designed CBFs equipped with NiTi SMA braces

  • Qiu, Canxing;Zhang, Yichen;Qi, Jian;Li, Han
    • Smart Structures and Systems
    • /
    • v.21 no.4
    • /
    • pp.479-491
    • /
    • 2018
  • Shape memory alloys (SMA) exhibit superelasticity which refers to the capability of entirely recovering large deformation upon removal of applied forces and dissipating input energy during the cyclic loading reversals when the environment is above the austenite finish temperature. This property is increasingly favored by the earthquake engineering community, which is currently developing resilient structures with prompt recovery and affordable repair cost after earthquakes. Compared with the other SMAs, NiTi SMAs are widely deemed as the most promising candidate in earthquake engineering. This paper contributes to evaluate the seismic performance of properly designed concentrically braced frames (CBFs) equipped with NiTi SMA braces under earthquake ground motions corresponding to frequently-occurred, design-basis and maximum-considered earthquakes. An ad hoc seismic design approach that was previously developed for structures with idealized SMAs was introduced to size the building members, by explicitly considering the strain hardening characteristics of NiTi SMA particularly. The design procedure was conducted to compliant with a suite of ground motions associated with the hazard level of design-basis earthquake. A total of four six-story CBFs were designed by setting different ductility demands for SMA braces while designating with a same interstory drift target for the structural systems. The analytical results show that all the designed frames successfully met the prescribed seismic performance objectives, including targeted maximum interstory drift, uniform deformation demand over building height, eliminated residual deformation, controlled floor acceleration, and slight damage in the main frame. In addition, this study indicates that the strain hardening behavior does not necessarily impose undesirable impact on the global seismic performance of CBFs with SMA braces.