Journal of Information Technology Applications and Management
/
v.30
no.5
/
pp.41-57
/
2023
This paper aims to analyse the factors influencing the implementation of smart factories and their performance after implementation, using the grounded theory analysis method based on interview data. The research subjects were 21 companies that were selected by the Smart Manufacturing Innovation Promotion Group under the SME Technology Information Promotion Agency in 2020-2021 as the best case smart factory implementation companies, and introduced the intermediate stage 1 or above. A total of 87 concepts were generated as a result of the analysis. We were able to classify them into 16 detailed categories, and finally derived six broad categories. These six categories are "motivation for adoption", "adoption context", "adoption level", "technology adoption", "usage effect" and "management effect". As a result of the overall structure analysis, it was found that the adoption level of smart factory is determined by the adoption motivation, the IT technology experience affects the adoption level, the adoption level determines the usage and usage satisfaction, internal and external training affects the usage and usage satisfaction, and the performance or results obtained by the usage and usage are reduced defect rate, improved delivery rate and improved productivity. This study was able to derive detailed variables of environmental factors and technical characteristics that affect the adoption of smart factories, and explore the effects on the usage effects and management effects according to the level of adoption. Through this study, it is possible to suggest the direction of adoption according to the characteristics of SMEs that want to adopt smart factories.
Journal of Information Technology Applications and Management
/
v.28
no.4
/
pp.45-57
/
2021
This research explores how the success of smart factory adoption is influenced by firm's dynamic capability. This research describes the underlying processes on how organizations manipulate or adapt organizational elements harmoniously to implement smart factory successfully. Although understanding of these processes is essential to many researchers and practitioners in the field, the information system research literature contains very few examples of this type. The research is conducted in the following sequence: first, the concept of dynamic capability is presented followed by research methodology; and then the analyses of case data are presented followed by discussions and future directions. The results of this research show that the firms with higher dynamic capability adopted smart factory more easily through alignment of various organizational elements.
The development of ICT brings a big change in manufacturing industries, and new information technology such as IoT, AR, and big data was applied on manufacturing process. As a result, the concept of smart factory has been introduced as a new manufacturing paradigm. In fact advanced countries like USA, Germany, and Japan have actively introduced smart factory in their manufacturing industries such as electronic, automobile, machinery, to improve production efficiency and quality. The manufacturing environment has been changed into flexible system, so that smart factory will be leading future manufacturing industries. Thes changes have more severe influence on Korean manufacturing industries. Mny industrial companies, have a strong interest in smart factory and they, particularly big enterprises, have been adopting smart factory to increase their manufacturing efficiencies. However, Korean small and medium-sized enterprises (SMEs) have many financial and technological difficulties so that the diffusion of smart factory in Korean SMEs has not been satisfiable up to present. However, smart factory is very important for enhancing their competitiveness in global market. Therefore, this study aims at identifying the standardization strategy of smart factory in so-called Korean 'roots industry' by presuming that the standardization will activate the diffusion of smart factory among Korean SMEs. For this purpose, first, this study examines the competitiveness of SMEs, especially in 'roots industry' and identifies the necessity of diffusion of smart factory among those SMEs. Second, based on the active review on the existing literature, this study identifies four factor groups that would influence the adoption or diffusion of standardized smart factory. They are technological, organizational, industrial and policy factors. Third, using those four factors, this study made two comprehensive case analyses on the adoption and diffusion of smart factory. These two companies belong to molding sector which is one of the important six sectors in 'root industry'. Finally, based on the theoretical and empirical analyse, this study suggests four strategies for activating the standardization of smart factory; international standardization, government-leading standardization, firm-leading standardization, and non-standardization.
The Journal of Economics, Marketing and Management
/
v.12
no.4
/
pp.13-25
/
2024
Purpose: Korea's construction industry has faced declining productivity and quality issues due to labor-intensive onsite construction and variables like weather, material price fluctuations, and labor shortages. The modular housing industry, introduced in Korea in 2003, offered benefits like reduced construction time and enhanced productivity through offsite manufacturing. However, its adoption remains limited due to high costs, quality concerns, and low consumer acceptance. Research Design, Data, and Methodology: This study explores the feasibility and impact of implementing smart factory technologies in the modular housing industry to overcome these barriers. Using survey data from 179 construction industry experts, the study employs frequency and regression analysis to identify key factors influencing the adoption of modular housing and the effectiveness of smart factories. Findings suggest that government-led educational programs and strong policy support are essential for successful implementation, enhancing productivity, reducing costs, and improving quality. Conclusions: The study emphasizes the need for standardization of modular housing, deregulation of relevant laws, and increased public awareness to stimulate market growth and innovation. Policy recommendations include financial support for modular manufacturers transitioning to smart factories, ensuring stable supply volumes, and promoting the benefits of modular housing to consumers. Integrating smart factory technologies can lead to significant advancements in the modular housing industry, contributing to the sustainable development and modernization of Korea's construction sector.
With the progress of the 4th industrial revolution, interest in smart factories is increasing. The government is implementing a smart factory support project for small and medium-sized manufacturing companies. Therefore, in this study, factors influencing small and medium-sized enterprises(SME's) intention of smart factory acceptance were analyzed. In particular, it focused on how the perception of government support affects intention of smart factory acceptance. For the empirical analysis, a research model was established by reflecting the characteristics of SMEs and the technical factors of the smart factory centering on the technology acceptance theory. Based on the model set in this way, a questionnaire survey was conducted for employees of SMEs. In this study, a total of 231 samples of valid data were used for analysis. The empirical analysis results are as follows. It was analyzed that performance expectancy, social influence, technology utilization capability, CEO will, and employee resistance to innovation, all introduced as research variables, had a significant effect on the use intention of smart factory acceptance. In particular, it was found that employees' resistance to innovation had a negative (-) effect on their use intention. Meanwhile, to analyze the moderating effect of government support, it was divided into a group with high expectations for government support and a group with low expectations. As a result, it was found that there was a difference in the effect of CEO's will, employees' resistance to innovation, and social influence on the use intention. On the other hand, no significant difference was found in the relationship between performance expectancy, technology utilization capability on the use intention. Based on the empirical analysis results, the academic and practical implications of this study were presented.
Journal of Information Technology Applications and Management
/
v.27
no.1
/
pp.75-95
/
2020
Smart Factory is the decisive factor of the Fourth Industrial Revolution and is a key field for national competitiveness. Until now, most smart factory research has focused on policy and technology. In order to spread more technology, it is necessary to study what factors influence the adoption of smart factory technology in the enterprise. Nevertheless, little research has been done. In this study, based on the UTAUT (Unified Theory of Acceptance and Use of Technology), which has been proved through many years of research, I have studied the factors that influence the acceptance of smart factory technology. As a result of research, performance expectancy, social influence, and facilitating conditions of UTAUT model had a positive(+) effect on behavior intention. Their relationship of influence was in the order of performance expectancy (β = .459)> facilitating conditions (β = .212)> social influence (β = .210). However, it was found that the effort expectancy did not affect the behavior intention, and the impact of the newly perceived risk on the behavior intention to use was not confirmed. The main reason is that the acceptance of smart factory technology is not a matter of personal interest but a matter of organizational choice. Trust, on the other hand, was found to be partially mediated between performance expectancy, facilitating conditions, social influence and behavior intention. For many years, many researchers have validated the UTAUT, which has been validated through various empirical studies. It is academically meaningful to begin the study of factors affecting the acceptance of smart factory technology in terms of the UTAUT. In practice, it is necessary to provide SME employees with more information related to the introduction of smart factories, to provide advanced services related to the establishment of smart factories, and to establish a standardized model for each industry.
This study examines the effects of participation purpose, corporate readiness, and acceptance of changes that may occur in the course of expert guidance on the performance of smart factory. For this study, 129 questionnaires obtained from SMEs participating in the Smart Meister support project were used, and SPSS 18.0 and the AMOS 18.0 program were used for statistical processing for empirical analysis of the hypotheses test. It was found that the company's business participation motivation and readiness status had a significant effect on the acceptance and cooperation of changes that occurred during the consulting process. In addition, the acceptance and cooperation of changes within the company had a significant effect on the satisfaction with the Meister support project and the financial performance. Companies participating in the Meister support project need to clarify their motives for participating in the project and make stable corporate readiness in advance. In addition, based on the CEO's support, it is necessary to have a motivational program and to build an organizational culture that can actively accept innovation.
Purpose - The purpose of this study is to examine firm-level attributes related to Korean manufacturing small and medium-sized enterprises' (SMEs') decisions to implement smart factories. Design/methodology/approach - This study uses the provided by the Ministry of SMEs and Startups of Korea and the Korea Federation of SMEs. Manufacturing SMEs' decisions to implement smart factories in 2018-2019 were analyzed using multinomial logit and ordered logit models. Findings - The findings of this study suggest that firms' decisions to implement smart factories were positively related to firm size, R&D intensity, international market scope, and transactional relationships with customers. However, smart factory implementation decisions were not related to firm age and CEO gender. Research implications or Originality - This study illuminates firm-level attributes that may drive organizational innovation in the era of Industry 4.0 and thus contributes to the innovation adoption literature. This study also contributes to growing research on smart factories by analyzing the actual, progressive decisions to implement smart factories, as opposed to perceived intentions to implement them.
The purpose of this study is to provide assistance to the establishment of related policies to improve the level of acceptance and use of smart factories for SMEs in Korea. To this end, the Unified Technology Acceptance Model (UTAUT) was extended to select additional factors that could affect the intention to accept technology, and to demonstrate this. To achieve the research objective, a questionnaire composed of 7-point Likert scales was prepared, and a survey was conducted for manufacturing-related companies. A total of 136 questionnaires were used for statistical processing. As a result of the hypothesis test, performance expectation and social influence had a positive (+) positive effect on voluntary use, but effort expectation and promotion conditions did not have a significant effect. As an extension factor, the network effect and organizational characteristics had a positive (+) effect, and the innovation resistance had a negative effect (-), but the perceived risk had no significant effect. When the size of the company is large, the perceived risk and innovation resistance are low, and the level of influencing factors for veterinary intentions, veterinary intentions, and veterinary behaviors are excluded. Through this study, factors that could have a positive and negative effect on the adoption (reduction) of smart factory-related technologies were identified and factors to be improved and factors to be reduced were suggested. As a result, this study suggests that smart factory-related technologies should be accepted.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.