• Title/Summary/Keyword: Smart Factory Implementation

Search Result 95, Processing Time 0.032 seconds

A Study on the Effect of Technological Innovation on the Implementation of Smart Factory through the Environmental Factors of the Enterprise -Absorption Capacity as Moderating Variable- (기업의 환경요인을 통한 기술혁신이 Smart Factory 구축에 미치는 영향 연구 -흡수역량을 조절변수로-)

  • Jin, Sung-Ok;Seo, Young Wook
    • The Journal of the Korea Contents Association
    • /
    • v.19 no.10
    • /
    • pp.407-420
    • /
    • 2019
  • This study is an empirical study of 'the effect of Technological innovation through environmental factors of an enterprise on the implementation of a Smart Factory'. The purpose of the research is to improve the utilization and effectiveness of the Smart Factory by considering and implementing factors that will be promoted in an internal environment or focus when building. The research method was statistical analysis with SMART PLS by surveying the relevant personnel of the company that implemented the Smart Factory. The results of the study showed that internal organizational factors and self-efficacy have a positive effect on technological innovation, and technology innovation has a positive effect on the key factors of smart factory implementation. And the absorbing capacity, which is a moderating variable, has a positive effect in part on the key factors of smart factory implementation by interacting with technological innovation factors. This study can be used by companies that want to implement a smart factory, and it has the significance of laying the theoretical foundation for research on smart factory implementation through empirical analysis.

Case Study on the Implementation of Facility AI Platform for Small and Medium Enterprises of Korean Root Industry (뿌리업종 중견중소기업의 설비 AI 플랫폼 구축에 관한 사례연구)

  • Lee, Byong Koo;Moon, Tae Soo
    • The Journal of Information Systems
    • /
    • v.32 no.3
    • /
    • pp.205-224
    • /
    • 2023
  • Purpose This study investigates the impact of organizational characteristics on organizational performance through case studies of smart factory implementation in the context of Korean small and medium Enterprises (SMEs). To achieve this goal, this study adopts the smart factory index of KOSMO (Korea Smart Manufacturing Office) established by Korean Ministry of SMEs and Startups. We visited 3 firms implemented smart factory projects. This study presents the results of field study in detail with evaluation criteria on how organizational competences like AI technology adoption and facility automation can be exploited to positively influence organizational performance through smart factory implementation. Design/methodology/approach There are not so many results of empirical studies related to smart factories in Korea. This is because organizational support and user involvement are required for facility AI platform service beyond factory automation after the start of the 4th Industrial Revolution. Korean government's KOSMO (Korean Smart Manufacturing Office) has developed and proposed a level measurement index for smart factory implementation. This study conducts case studies based on the level measurement method proposed by KOSMO in the process of conducting case studies of three companies belonging to the root and mechanic industries in Korea. Findings The findings indicate that organizational competences, such as facility AI platform adoption and user involvement, are antecedents to influence smart factory implementation, while smart factory implementation has significant relationship with organizational performance. This study provides a better understanding of the connection between organizational competences and organizational performance through smart factory case studies. This study suggests that SMEs should focus on enhancing their organizational competences for improving organizational performance through implementing smart factory projects.

A Study on Organizational Competence and Organizational Performance for Smart Factory Implementation of Korean Small and Medium Enterprises (국내 중소기업의 스마트공장 구축을 위한 조직역량과 조직성과에 관한 연구)

  • Seo, Pan Jong;Kim, Dong Hui;Moon, Tae Soo
    • The Journal of Information Systems
    • /
    • v.31 no.1
    • /
    • pp.197-218
    • /
    • 2022
  • Purpose This study examines the roles of firm-level smart factory implementation in the relationship between organizational competence and organizational performance in the context of Korean small and medium Enterprises (SMEs). To achieve this goal, this study presents and empirically tests a research model with evaluation data conducted by industrial experts on how organizational competence can be exploited to positively influence organizational performance through smart factory implementation. Design/methodology/approach Organizational competence are based on the research construct developed by Odważny et al.(2018). Research constructs on smart factory are based on the measurement model developed by Korea Technology and Information Promotion Agency for Korea small and medium Enterprises (TIPA) (2020) and organizational performance are based on the performance construct developed by Kwon(2019). To complete the investigation, we collected 31 firm data conducted by industrial experts in Korea from Dec 2018 to Dec 2020. Most of firm was implemented officially by government budget granted for smart factory of Korea SMEs. To test our hypotheses, partial least squares (PLS) method was employed. Findings The findings indicate that organizational competence is antecedent to influence smart factory implementation, while smart factory implementation has significant relationship with organizational performance. This study provides a better understanding of the connection between organizational competence and organizational performance through smart factory implementation. So companies should focus on enhancing organizational competence and implementing smart factory to obtain sustainable competitiveness.

A Study on Big Data Analytics Services and Standardization for Smart Manufacturing Innovation

  • Kim, Cheolrim;Kim, Seungcheon
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.14 no.3
    • /
    • pp.91-100
    • /
    • 2022
  • Major developed countries are seriously considering smart factories to increase their manufacturing competitiveness. Smart factory is a customized factory that incorporates ICT in the entire process from product planning to design, distribution and sales. This can reduce production costs and respond flexibly to the consumer market. The smart factory converts physical signals into digital signals, connects machines, parts, factories, manufacturing processes, people, and supply chain partners in the factory to each other, and uses the collected data to enable the smart factory platform to operate intelligently. Enhancing personalized value is the key. Therefore, it can be said that the success or failure of a smart factory depends on whether big data is secured and utilized. Standardized communication and collaboration are required to smoothly acquire big data inside and outside the factory in the smart factory, and the use of big data can be maximized through big data analysis. This study examines big data analysis and standardization in smart factory. Manufacturing innovation by country, smart factory construction framework, smart factory implementation key elements, big data analysis and visualization, etc. will be reviewed first. Through this, we propose services such as big data infrastructure construction process, big data platform components, big data modeling, big data quality management components, big data standardization, and big data implementation consulting that can be suggested when building big data infrastructure in smart factories. It is expected that this proposal can be a guide for building big data infrastructure for companies that want to introduce a smart factory.

Investigation of Factors for Smartization of Ppuri Enterprises Based on the Smart Factory Status (뿌리기업 스마트공장 구축 현황과 영향관계 분석)

  • Kim, Bo Kyung;Lee, Sang Mok;Kim, Tae Bum;Kim, Taek Soo;Kim, Chang Kyung
    • Journal of Powder Materials
    • /
    • v.29 no.2
    • /
    • pp.166-175
    • /
    • 2022
  • Ppuri or Root technology primarily includes technologies such as casting, mold, plastic working, welding, heat treatment and surface treatment. It is regarded as an essential element for improving the competitiveness of the quality of final products. This study investigates the current status of smart factory implementation for Ppuri companies and analyzes the influencing relationships among various company factors. The factors affecting smart factory implementation for Ppuri companies are sales, exports, number of technical employees, and holding corporate research institutes. In addition, this research shows that even if smart factory implementation is pursued for data collection, data utilization is not implemented properly. Thus, it is suggested that the implementation of smart factories requires not only the availability of facilities and systems but also proper data utilization.

A Study on the Influence of Smart Factory Key Factors on Management Performance through Internal Environmental Factors in Small and Medium Businesses (중소기업에서 내부 환경요인을 통한 Smart Factory 핵심요인이 경영성과에 미치는 영향 연구)

  • Jin, Sung-Ok;Seo, Young Wook
    • Journal of Digital Convergence
    • /
    • v.17 no.7
    • /
    • pp.115-124
    • /
    • 2019
  • This study is an empirical study of 'the effect of the key factors of Smart Factory on management performance through internal environmental factors in small and medium enterprises'. The purpose of the research is to verify that the implementation of a Smart Factory affects the performance of management and contribute to the continued development of the company, and to suggest the national policy of expanding the deployment of a Smart Factory. The procedures were surveyed by working-level officials of small and medium-sized manufacturing companies with a Smart Factory and statistically analyzed with the SPSS and SMART PLS. The results of the study showed that first, the environmental factors within the company had a positive effect on the key components of the Smart Factory. Second, the key factor in Smart Factory has had a positive impact on management performance. The above evidence shows that the key factors in smart factory considering the environmental factors of an enterprise affect its management performance, thus laying the theoretical foundation for the performance of smart factory construction. In the future, we will study how to build a Smart Factory.

Smart Factory Promotion and Operation Analysis in the 4th Industrial Revolution Environment

  • Lee, Seong-Hoon;Lee, Dong-Woo
    • International journal of advanced smart convergence
    • /
    • v.11 no.3
    • /
    • pp.42-48
    • /
    • 2022
  • Currently, the world is facing severe inflation due to Corona and the war in Ukraine, and it is causing a lot of difficulties for us. Companies are facing a lot of restrictions on their economic activities compared to the past due to supply chain problems and foreign exchange rates. In this situation, many countries have been implementing various smart factory promotion projects to secure competitiveness through productivity improvement in the manufacturing industry. In this study, the contents of smart factory promotion in major countries were reviewed, and problems raised about the implementation of smart factory in Korea, which are being implemented based on this, were described. It is most reasonable to judge the success of a smart factory by the achievement of the performance indicators presented at the time of the project. Therefore, based on the performance index of the business, which is a key factor in determining the success or failure of a smart factory, we investigated whether the company's smart factory promotion can be carried out successfully through examples

A Case Study on Smart Factory Extensibility for Small and Medium Enterprises (중소기업 스마트 공장 확장성 사례연구)

  • Kim, Sung-Min;Ahn, Jaekyoung
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.44 no.2
    • /
    • pp.43-57
    • /
    • 2021
  • Smart factories can be defined as intelligent factories that produce products through IoT-based data. In order to build and operate a smart factory, various new technologies such as CPS, IoT, Big Data, and AI are to be introduced and utilized, while the implementation of a MES system that accurately and quickly collects equipment data and production performance is as important as those new technologies. First of all, it is very essential to build a smart factory appropriate to the current status of the company. In this study, what are the essential prerequisite factors for successfully implementing a smart factory was investigated. A case study has been carried out to illustrate the effect of implementing ERP and MES, and to examine the extensibilities into a smart factory. ERP and MES as an integrated manufacturing information system do not imply a smart factory, however, it has been confirmed that ERP and MES are necessary conditions among many factors for developing into a smart factory. Therefore, the stepwise implementation of intelligent MES through the expansion of MES function was suggested. An intelligent MES that is capable of making various decisions has been investigated as a prototyping system by applying data mining techniques and big data analysis. In the end, in order for small and medium enterprises to implement a low-cost, high-efficiency smart factory, the level and goal of the smart factory must be clearly defined, and the transition to ERP and MES-based intelligent factories could be a potential alternative.

The implementation of Network Layer in Smart Factory

  • Park, Chun Kwan;Kang, Jeong-Jin
    • International journal of advanced smart convergence
    • /
    • v.11 no.1
    • /
    • pp.42-47
    • /
    • 2022
  • As smart factory is the factory which produces the products according to the customer's diverse demand and the changing conditions in it, it can be characterized by flexible production, dynamic reconstruction, and optimized production environment. To implement these characteristics, many kind of configuration elements in the smart factory should be connected to and communicated with each other. So the network is responsible for playing this role in the smart factory. As SDN (Software Defined Network) is the technology that can dynamically cope with the explosive increasing data amount and the hourly changing network condition, it is one of network technologies that can be applied to the smart factory. In this paper, we address SDN function and operation, SDN model suitable for the smart factory, and then performs the simulation for measuring this model.

Factors that Drive the Adoption of Smart Factory Solutions by SMEs

  • Namjae Cho;Soo Mi Moon
    • Journal of Information Technology Applications and Management
    • /
    • v.30 no.5
    • /
    • pp.41-57
    • /
    • 2023
  • This paper aims to analyse the factors influencing the implementation of smart factories and their performance after implementation, using the grounded theory analysis method based on interview data. The research subjects were 21 companies that were selected by the Smart Manufacturing Innovation Promotion Group under the SME Technology Information Promotion Agency in 2020-2021 as the best case smart factory implementation companies, and introduced the intermediate stage 1 or above. A total of 87 concepts were generated as a result of the analysis. We were able to classify them into 16 detailed categories, and finally derived six broad categories. These six categories are "motivation for adoption", "adoption context", "adoption level", "technology adoption", "usage effect" and "management effect". As a result of the overall structure analysis, it was found that the adoption level of smart factory is determined by the adoption motivation, the IT technology experience affects the adoption level, the adoption level determines the usage and usage satisfaction, internal and external training affects the usage and usage satisfaction, and the performance or results obtained by the usage and usage are reduced defect rate, improved delivery rate and improved productivity. This study was able to derive detailed variables of environmental factors and technical characteristics that affect the adoption of smart factories, and explore the effects on the usage effects and management effects according to the level of adoption. Through this study, it is possible to suggest the direction of adoption according to the characteristics of SMEs that want to adopt smart factories.