• Title/Summary/Keyword: Smart Distribution

Search Result 1,065, Processing Time 0.022 seconds

A GQM Approach to Evaluation of the Quality of SmartThings Applications Using Static Analysis

  • Chang, Byeong-Mo;Son, Janine Cassandra;Choi, Kwanghoon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.6
    • /
    • pp.2354-2376
    • /
    • 2020
  • SmartThings is one of the most popular open platforms for home automation IoT solutions that allows users to create their own applications called SmartApps for personal use or for public distribution. The nature of openness demands high standards on the quality of SmartApps, but there have been few studies that have evaluated this thoroughly yet. As part of software quality practice, code reviews are responsible for detecting violations of coding standards and ensuring that best practices are followed. The purpose of this research is to propose systematically designed quality metrics under the well-known Goal/Question/Metric methodology and to evaluate the quality of SmartApps through automatic code reviews using a static analysis. We first organize our static analysis rules by following the GQM methodology, and then we apply the rules to real-world SmartApps to analyze and evaluate them. A study of 105 officially published and 74 community-created real-world SmartApps found a high ratio of violations in both types of SmartApps, and of all violations, security violations were most common. Our static analysis tool can effectively inspect reliability, maintainability, and security violations. The results of the automatic code review indicate the common violations among SmartApps.

A Study on the Effective Downscaling Methodology for Design of a Micro Smart Grid Simulator

  • Ko, Yun-Seok
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.4
    • /
    • pp.1425-1437
    • /
    • 2018
  • In this paper, a methodology was proposed to reduce the electrical level and spatial size of the smart grid with distributed generations (DGs) to a scale in which the electrical phenomena and control strategies for disturbances on the smart grid could be safely and freely experimented and observed. Based on the design methodology, a micro smart grid simulator with a substation transformer capacity of 190VA, voltage level of 19V, maximum breaking current of 20A and size of $2{\times}2m^2$ was designed by reducing the substation transformer capacity of 45MVA, voltage level of 23kV and area of $2{\times}2km^2$ of the smart grid to over one thousandth, and also reducing the maximum breaking current of 12kA of the smart grid to 1/600. It was verified that the proposed design methodology and designed micro smart grid simulator were very effective by identifying how all of the fault currents are limited to within the maximum breaking current of 20A, and by confirming that the maximum error between the fault currents obtained from the fault analysis method and the simulation method is within 1.8% through the EMTP-RV simulation results to the micro smart grid simulator model.

Development of a Customer Friendly GIS-based Disaster Management System in South Korea

  • SONG, Wanyoung;CHOI, Junho;LEE, Dongkwan;CHOI, Choongik
    • Journal of Distribution Science
    • /
    • v.17 no.11
    • /
    • pp.27-34
    • /
    • 2019
  • Purpose: This study explored the improvement and the direction of the smart disaster management system newly attempted in South Korea by analyzing the utilization of the existing system. This study focuses on making it easy to apply to user tasks and improving on site information. Research design, data and methodology: Problems were identified through field surveys with administrators in charge of administration and public institutions based on GIS based status board for NDMS which is widely used in Korea. Also, this study attempted to generalize to specialists in disaster management who are more likely to use the system in the future. Results: We derived improvement plans and verified the results through expert feedback. The results show that the GIS based status board for NDMS is cumbersome to use due to the vast array of unnecessary information compared to the high expected utilization. Conclusions: We found that improving the speed and accuracy of the smart disaster management information delivery system is necessary. Also, it is important to identify reasons for not improve the willingness to use this technology in disaster management and to figure out the process by which field personnel makes decisions that smart disaster information cannot be used for disaster management.

Context-aware Recommendation System for Water Resources Distribution in Smart Water Grids (스마트 워터 그리드(Smart Water Grid) 수자원 분배를 위한 컨텍스트 인지 추천시스템)

  • Yang, Qinghai;Kwak, Kyung Sup
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.13 no.2
    • /
    • pp.80-89
    • /
    • 2014
  • In this paper, we conceive a context-aware recommendations system for water distribution in future smart water grids, with taking the end users' profiles, water types, network conditions into account. A spectral clustering approach is developed to cluster end users into different communities, based on the end users' common interests in water resources. A back-propagation (BP) neural network is designed to obtain the rating list of the end users' preferences on water resources and the water resource with the highest prediction rating is recommended to the end users. Simulation results demonstrate that the proposed scheme achieves the improved accuracy of recommendation within 2.5% errors notably together with a better user experience in contrast to traditional recommendations approaches.

Design and Implementation of Distributed Charge Signal Processing Software for Smart Slow and Quick Electric Vehicle Charge

  • Chang, Tae Uk;Ryu, Young Su;Song, Seul Ki;Kwon, Ki Won;Paik, Jong Ho
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.3
    • /
    • pp.1674-1688
    • /
    • 2019
  • As environmental pollution and fossil fuel energy problems from fuel vehicle have occurred, the interest of electric vehicle(EV) has increased. EV industry and energy industry have grown dynamically in these days. It is expected that the next generation of primary transportation will be EV, and it is necessary to prepare EV infra and efficient energy management such as EV communication protocol, EV charge station, and smart grid. Those EV and energy industry fields are now on growth. Also, the study and development of them are now in progress. In this paper, distributed charge signal processing software for smart slow and quick EV charge is proposed and designed for dealing with EV charge demand. The software consists of smart slow and quick EV charge schedule engine and EV charge power distribution core. The software is designed to support two charge station types. One is normal EV charge station and the other is bus garage EV charge station. Both two types collect the data from EV charge stations, and then analyze the collected data. The software suggests optimized EV charge schedule and deliveries EV charge power distribution information to power switchboard system, and the designed software is implemented on embedded system. It is expected that the software provides efficient EV charge schedule.

An Overview of False Data Injection Attack Against Cyber Physical Power System (사이버 물리 전력 시스템에 대한 허위 데이터 주입 공격에 관한 고찰)

  • Bae, Junhyung
    • Journal of IKEEE
    • /
    • v.26 no.3
    • /
    • pp.389-395
    • /
    • 2022
  • With the evolution of technology, cyber physical systems (CPSs) are being upgraded, and new types of cyber attacks are being discovered accordingly. There are many forms of cyber attack, and all cyber attacks are made to manipulate the target systems. A representative system among cyber physical systems is a cyber physical power system (CPPS), that is, a smart grid. Smart grid is a new type of power system that provides reliable, safe, and efficient energy transmission and distribution. In this paper, specific types of cyber attacks well known as false data injection attacks targeting state estimation and energy distribution of smart grid, and protection strategies for defense of these attacks and dynamic monitoring for detection are described.

Identifying Puddles based on Intensity Measurement using LiDAR

  • Minyoung Lee;Ji-Chul Kim;Moo Hyun Cha;Hanmin Lee;Sooyong Lee
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.5
    • /
    • pp.267-274
    • /
    • 2023
  • LiDAR, one of the most important sensing methods used in mobile robots and cars with assistive/autonomous driving functions, is used to locate surrounding obstacles or to build maps. For real-time path generation, the detection of potholes or puddles on the driving surface is crucial. To achieve this, we used the coordinates of the reflection points provided by LiDAR as well as the intensity information to classify water areas, which was achieved by applying a linear regression method to the intensity distribution. The rationale for using the LiDAR index as an input variable for linear regression is presented, and we demonstrated that it is not affected by errors in the distance measurement value. Because of LiDAR vertical scanning, if the reflective surface is not uniform, it is divided into different groups according to the intensity distribution, and a mathematical basis for this is presented. Through experiments in an outdoor driving area, we could distinguish between flat ground, potholes, and puddles, and kinematic analysis was performed to calculate the maximum width that could be crossed for a given vehicle body size and wheel radius.

Optimizing Business Opportunities: The Evolving Landscape of Smart Cities in South Korea

  • Yooncheong CHO;Jooyeol MAENG
    • Asian Journal of Business Environment
    • /
    • v.14 no.2
    • /
    • pp.1-10
    • /
    • 2024
  • Purpose: The purpose of this study is to investigate the essential factors contributing to the growth and success of smart cities, providing a comprehensive analysis of key elements that are crucial in fostering the development of smart cities. This study explored the impacts of technology-driven applications, corporate involvement, the role of experts, citizen co-creation, city-led strategy governance, and sustainable urban practices on overall attitudes towards smart cities. Additionally, the study examined the impact of overall attitude on the growth trajectory of the smart cities and satisfaction. Research design, data and methodology: To collect data, this study employed an online survey conducted by a reputable research organization. Data analysis involved the use of factor analysis, ANOVA, and regression analysis. Results: This study unveiled significant impacts of technology-driven applications, corporate involvement, the role of experts, citizen co-creation, city-led strategy governance, and sustainable urban practices on the overall attitudes. Furthermore, it demonstrated that the overall attitude significantly influences the growth trajectory of smart cities. Conclusions: This study identified key driving factors for smart city development, suggesting that the consideration of sustainable urban practices emerges as the most significant factor influencing the growth of the smart cities.

Energy Efficient IDS Node Distribution Algorithm using Minimum Spanning Tree in MANETs

  • Ha, Sung Chul;Kim, Hyun Woo
    • Smart Media Journal
    • /
    • v.5 no.4
    • /
    • pp.41-48
    • /
    • 2016
  • In mobile ad hoc networks(MANETs), all the nodes in a network have limited resources. Therefore, communication topology which has long lifetime is suitable for nodes in MANETs. And MANETs are exposed to various threats because of a new node which can join the network at any time. There are various researches on security problems in MANETs and many researches have tried to make efficient schemes for reducing network power consumption. Power consumption is necessary to secure networks, however too much power consumption can be critical to network lifetime. This paper focuses on energy efficient monitoring node distribution for enhancing network lifetime in MANETs. Since MANETs cannot use centralized infrastructure such as security systems of wired networks, we propose an efficient IDS node distribution scheme using minimum spanning tree (MST) method to cover all the nodes in a network and enhance the network lifetime. Simulation results show that the proposed algorithm has better performance in comparison with the existing algorithms.

Do resilience and work engagement enhance distribution manager performance? A study of the automotive sector

  • LHALLOUBI, Jaouad;IBNCHAHID, Fatima
    • Journal of Distribution Science
    • /
    • v.18 no.7
    • /
    • pp.5-17
    • /
    • 2020
  • Purpose: The purpose of this study is to examine the influence of resilience and work engagement on performance of managers in the automotive sector in Morocco. It analyses the mediating effect of work engagement between resilience and manager performance. Though earlier studies have focused on the effect of resilience on employee performance and work engagement. none has looked at the mediating role of work engagement in this context. Thus, the present paper attempts to fill this literature gap. Research design, data and methodology: A confirmatory survey was conducted among a sample of 196 employees of automobile companies in Tangier-Morocco. A structural equation analysis using SmartPLS was performed while Preacher and Hayes (2008) method was used to analyze the mediation effect. Results: a) Manager resilience has a positive influence on work engagement, which further influences their performance; b) there is a statistically insignificant relationship between resilience and manager performance; c) Structural equation modelling analysis shows that work engagement partially mediates the relationship between resilience and manager performance. Conclusion: Theoretical contributions, practical implications, and future research directions are discussed.