• Title/Summary/Keyword: Smart Core

Search Result 653, Processing Time 0.022 seconds

Development and verification of PWR core transient coupling calculation software

  • Li, Zhigang;An, Ping;Zhao, Wenbo;Liu, Wei;He, Tao;Lu, Wei;Li, Qing
    • Nuclear Engineering and Technology
    • /
    • v.53 no.11
    • /
    • pp.3653-3664
    • /
    • 2021
  • In PWR three-dimensional transient coupling calculation software CORCA-K, the nodal Green's function method and diagonal implicit Runge Kutta method are used to solve the spatiotemporal neutron dynamic diffusion equation, and the single-phase closed channel model and one-dimensional cylindrical heat conduction transient model are used to calculate the coolant temperature and fuel temperature. The LMW, NEACRP and PWR MOX/UO2 benchmarks and FangJiaShan (FJS) nuclear power plant (NPP) transient control rod move cases are used to verify the CORCA-K. The effects of burnup, fuel effective temperature and ejection rate on the control rod ejection process of PWR are analyzed. The conclusions are as follows: (1) core relative power and fuel Doppler temperature are in good agreement with the results of benchmark and ADPRES, and the deviation between with the reference results is within 3.0% in LMW and NEACRP benchmarks; 2) the variation trend of FJS NPP core transient parameters is consistent with the results of SMART and ADPRES. And the core relative power is in better agreement with the SMART when weighting coefficient is 0.7. Compared with SMART, the maximum deviation is -5.08% in the rod ejection condition and while -5.09% in the control rod complex movement condition.

Conceptualization of Smart Tourism Destination Competitiveness

  • Koo, Chulmo;Shin, Seunghun;Gretzel, Ulrike;Hunter, William Cannon;Chung, Namho
    • Asia pacific journal of information systems
    • /
    • v.26 no.4
    • /
    • pp.561-576
    • /
    • 2016
  • This paper aims to develop a conceptual model of smart tourism destination competitiveness to provide implications in terms of smart tourism destination realization and smart tourism destination competitiveness development. A literature review on tourism destination competitiveness and smart tourism destination is performed. A conceptual model is suggested on the basis of the model of destination competitiveness developed by Crouch and Ritchie (1999). The suggested conceptual model integrates the traditional concepts of comparative advantages and competitive advantages, seven core resources and attractors, and five destination management factors. Smart technology is included as a new core resource and attractor in the model. This study is the first to comprehensively conceptualize smart tourism destination competitiveness. Moreover, this study has practical value in the sense that it focused on the convergence between smart technology and other factors.

A Study on the Competence Model of Smart Worker (스마트워커의 역량모델에 관한 연구)

  • Noh, Kyoo-Sung;Kim, Kwui-Gon;Byun, Jong-Bong
    • Journal of Digital Convergence
    • /
    • v.9 no.5
    • /
    • pp.215-224
    • /
    • 2011
  • The purpose of this study is to identify a core competencies of the smart worker which most needed in the Smart Work 2.0 environment and to define the competence model of smart worker that can be most applied to. Smart worker for the core competence model as a originality & innovation competence and social skills, digital capability and the capacity of each organic connection to each other is very necessary. Such a smart worker competencies needed to strengthen the three related to the smart foundation for a smart network that will help encourage a very important role is considered.

CFD ANALYSIS FOR THERMAL MIXING CHARACTERISTICS OF A FLOW MIXING HEADER ASSEMBLY OF SMART (SMART 유동혼합헤더집합체 열혼합 특성 해석)

  • Kim, Y.I.;Bae, Y.M.;Chung, Y.J.;Kim, K.K.
    • Journal of computational fluids engineering
    • /
    • v.20 no.1
    • /
    • pp.84-91
    • /
    • 2015
  • SMART adopts, very unique facility, an FMHA to enhance the thermal and flow mixing capability in abnormal conditions of some steam generators or reactor coolant pumps. The FMHA is important for enhancing thermal mixing of the core inlet flow during a transient and even during accidents, and thus it is essential that the thermal mixing characteristics of flow of the FMHA be understood. Investigations for the mixing characteristics of the FMHA had been performed by using experimental and CFD methods in KAERI. In this study, the temperature distribution at the core inlet region is investigated for several abnormal conditions of steam generators using the commercial code, FLUENT 12. Simulations are carried out with two kinds of FMHA shapes, different mesh resolutions, turbulence models, and steam generator conditions. The CFD results show that the temperature deviation at the core inlet reduces greatly for all turbulence models and steam generator conditions tested here, and the effect of mesh refinement on the temperature distribution at the core inlet is negligible. Even though the uniformity of FMHA outlet hole flow increases the thermal mixing, the temperature deviation at the core inlet is within an acceptable range. We numerically confirmed that the FMHA applied in SMART has an excellent mixing capability and all simulation cases tested here satisfies the design requirement for FMHA thermal mixing capability.

Design, Fabrication and Test of Smart Skin Sandwich Specimen (스마트 스킨 샌드위치 시편의 설계, 제작 및 시험 평가)

  • 김용범;김영성;박훈철;윤광준;이재화
    • Composites Research
    • /
    • v.15 no.3
    • /
    • pp.45-51
    • /
    • 2002
  • Smart skin, a multi-layer structure of composed or different materials, was designed and fabricated. Tests and analyses are conducted to study the characteristics of its behavior under compression and bending loads. The designed smart skin failed due to premature buckling before compression failure. It was confirmed that shear moduli of honeycomb core affect structural stability of smart skin. A new test method and device were designed fur better measurement of shear moduli of honeycomb core. Numerical prediction of structural behavior of smart skin by NASTRAN agreed well with experimental data.

Performance Prediction of Main Coolant Pump in Integral Reactor SMART (일체형원자로 SMART 냉각재순환펌프의 성능예측)

  • Kim Min-Hwan;Park Jin-Seok;Kim Jong-In
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.118-125
    • /
    • 2001
  • The performance prediction of SMART MCP was performed using a computational fluid dynamics code. General capacity-head performance curve of MCP, which is provided to other design branches as design input, was obtained and it showed the typical type of axial pump performance curve. When four MCPs operate in parallel and one of them stops while the others continue to operate, SMART requires reduced power operation. A procedure for predicting the performance of SMART MCP for that case was developed and verified with available experimental data. An analysis based on the developed procedure was performed for two cases; the impeller of sloped MCP is fixed or free to rotate in reverse direction. According to the results, $73\%$ flow rate of normal operation enters the reactor core in the case of the locked impeller. In case of the impeller free rotation, the flow rate entering the reactor core is $62.8\%$.

  • PDF

Analysis of Job Scheduling and the Efficiency for Multi-core Mobile GPU (멀티코어형 모바일 GPU의 작업 분배 및 효율성 분석)

  • Lim, Hyojeong;Han, Donggeon;Kim, Hyungshin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.7
    • /
    • pp.4545-4553
    • /
    • 2014
  • Mobile GPU has led to the rapid development of smart phone graphic technology. Most recent smart phones are equipped with high-performance multi-core GPU. How a multi-core mobile GPU can be utilized efficiently will be a critical issue for improving the smart phone performance. On the other hand, most current research has focused on a single-core mobile GPU; studies of multi-core mobile GPU are rare. In this paper, the job scheduling patterns and the efficiency of multi-core mobile GPU are analyzed. In the profiling result, despite the higher number of GPU cores, the total processing time required for certain graphics applications were increased. In addition, when GPU is processing for 3D games, a substantial amount of overhead is caused by communication between not only the CPU and GPU, but also within the GPUs. These results confirmed that more active research for multi-core mobile GPU should be performed to optimize the present mobile GPUs.