• Title/Summary/Keyword: Smart Board

Search Result 274, Processing Time 0.023 seconds

Study on IoT-based Map Inside the Building and Fire Perception System (IoT 기반 건물 내부 지도 및 화재 안내 시스템에 관한 연구)

  • Moon, Sung-Ryong;Cho, Joon-Ho
    • Journal of Digital Convergence
    • /
    • v.17 no.1
    • /
    • pp.85-90
    • /
    • 2019
  • This paper is a study on IoT based map inside the building and fire perception system using microprocessor and LABVIEW program. The smart control system implemented in this paper is designed to identify the location of fire by using microprocessor, flame detection sensor, carbon monoxide sensor and temperature sensor, and to guide the optimal travel route through Zigbee communication. And the proposed system uses QR code to interoperate with smartphone. The coordinator control verified that the sensor value of the smart control system installed through the LABVIEW software was confirmed. The IoT based control system studied in this paper was implemented with Arduino mega board and LABVIEW software, and the operation status was confirmed by display device and coordination.

Development and Application of Arduino Based Multi-sensors System for Agricultural Environmental Information Collection - A Case of Hog Farm in Yeoju, Gyeonggi - (농업환경정보 수집을 위한 아두이노 기반 멀티 센서 시스템 개발 및 적용 - 경기 여주시 소재 양돈농가를 사례로 -)

  • Han, Jung-Heon;Park, Jong-Jun
    • Journal of Korean Society of Rural Planning
    • /
    • v.25 no.2
    • /
    • pp.15-21
    • /
    • 2019
  • The agricultural environment is changing and becoming more advanced due to the influence of the 4th Industrial Revolution. From the basic plan of Rural Informatics to the current level of 2nd generation smart farms aimed at improving productivity using Big data, cloud network and more IoT technology. We are continuing to provide support and research and development. However, many problems remain to be solved in order to supply and settle smart farms in Korea. The purpose of this study is to provide a method of collecting and sharing data on farming environment and to help improve the income and productivity of farmers based on collected data. In the case of hog farm, the multiple sensors for environmental data like temperature, humidity and gases and the network environment for connecting the internet were established. The environment sensor was made using the ESP8266 Node MCU board as micro-controller, DHT22 sensor for temperature and humidity, and MQ series sensors for various gases in the hog pens. The network sensor was applied experimentally for one month and the environmental data of the hog farm was stored on a web database. This study is expected to raise the importance of collecting and managing the agricultural and environmental data, for the next generation farmers to understand the smart farm more easily and to try it by themselves.

Automotive Safety and Convenience Service Using Bluetooth and Smartwatch (블루투스와 스마트워치를 활용한 자동차 안전 및 편의 서비스)

  • Park, Han-Saem;Im, Noh-Gan;Cho, Ji-Yeon;Lee, Jong-Bae;Lee, Seongsoo
    • Journal of IKEEE
    • /
    • v.24 no.4
    • /
    • pp.1188-1191
    • /
    • 2020
  • In this paper, automotive safety and convenience service is proposed based on bluetooth and smart watch. The proposed service performs accident detection, kidnapping detection, kid-left-alone-in-car detection, parking location recording, and smart key function. Conventional smartphone services often fails to precisely recognize accident and kidnapping situations since smartphone is located on the dashboard or in the bag. On the contrary, smartwatch recognizes accident and kidnapping situations more precisely since it is always worn on the wrist with hearbeat monitoring. The proposed service recognise various situations around drives and passengers using acceleration sensor, GPS sensor, heartbeat sensor and bluetooth link status. It also performs accident notice, sound recording, and other necessary actions. It also performs door opening, door closing, hazard light flickering, and other necessary actions using OBD-II connection to the vehicle.

Proposal of elevator calling intelligent IoT system using smartphone Bluetooth (스마트폰 블루투스를 이용한 승강기 호출 지능형 IoT 시스템 제안)

  • Si Yeon Kim;Sun-Kuk Noh
    • Smart Media Journal
    • /
    • v.13 no.1
    • /
    • pp.60-66
    • /
    • 2024
  • The Internet of Things, which began by connecting sensors through a network, is developing into an intelligent IoT by combining it with artificial intelligence technology. Elevators are essential for high-rise buildings in the city, and elevators move from floor to floor and perform the functions of transporting goods and moving users. It is necessary to provide safe and convenient services for elevator users in high-rise buildings or special environments (hospitals, etc.). In an environment where rapid patient transportation is important, such as large hospitals, there is a problem that hospital staff and the general public often use the elevator for patients. In particular, when moving patients where golden time is important, the waiting time to board the elevator is a major hindrance. In order to solve this problem, this study proposes an intelligent IoT system for elevator calling using smartphone Bluetooth. First, we experimented with the elevator calling IoT system using smartphone Bluetooth, and as a result of the experiment, it was confirmed that it can authenticate elevator users and reduce unnecessary waiting time for boarding. In addition, we propose an intelligent IoT system that connects with intelligent IoT.

An Efficient Smart Indoor Emotional Lighting Control System based on Android Platform using Biological Signal (생체신호를 이용한 안드로이드 플랫폼 기반의 효율적인 스마트 실내 감성조명 제어 시스템)

  • Yun, Su-Jeong;Hong, Sung-IL;Lin, Chi-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.1
    • /
    • pp.199-207
    • /
    • 2016
  • In this paper, we propose efficient smart indoor emotional lighting control system based on android platform using the biological signal. The proposed smart indoor smart emotional lighting control system were configured as the biological signal measurement device and removable smart wall pad, lighting driver, luminaire. The control system was extracts the emotional language by measured the biological signal, and it was transmitted a control signal to each lighting driver using a bluetooth in the wall pad. The lighting driver were designed to control the lighting device through an expansion board by collected control signal and the illuminance information the surrounding. In this case, the wall pad can be selecting of manual control and the bio signal mode by that indoor emotional lighting control algorithms, and it was implemented the control program that possible to partial control by selecting the wanted light. Experiment results of the proposed smart indoor emotional lighting control system, it were possible to the optional control about the luminaire of required area, and the manual control by to adjustable of color temperature with that the efficiently adjustable of lighting by to biological signal and emotional language. Therefore, were possible to effective control for improvement of concentration and business capability of indoor space business conduct by controlling the color and brightness that is appropriate for your situation. And, was reduced power consumption and dimmer voltage, lighting-current than the existing-emotional lighting control system.

Development of an IoT Smart Sensor for Detecting Gaseous Materials (사물인터넷 기술을 이용한 가스상 물질 측정용 스마트센서 개발과 향후과제)

  • Kim, Wook;Kim, Yongkyo;You, Yunsun;Jung, Kihyo;Choi, Won-Jun;Lee, Wanhyung;Kang, Seong-Kyu;Ham, Seunghon
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.32 no.1
    • /
    • pp.78-88
    • /
    • 2022
  • Objectives: To develop the smart sensor to protect worker's health from chemical exposure by adopting ICT (Information and Communications Technology) technologies. Methods: To develope real-time chemical exposure monitoring system, IoT (Internet of Things) sensor technology and regulations were reviewed. We developed and produced smart sensor. A smart sensor is a system consisting of a sensor unit, a communication unit, and a platform. To verify the performance of smart sensors, each sensor has been certified by the Korea Laboratory Accreditation Scheme (KOLAS). Results: Chemicals (TVOC; Total Volatile Organic Compounds, Cl2: Chlorine, HF: Hydrogen fluoride and HCN: Hydrogen cyanide) were selected according to a priority logic (KOSHA Alert, acute poisoning statistics, literature review). Notifications were set according to OEL (occupational exposure limit). Sensors were selected based on OEL and the capabilities of the sensors. Communication is designed to use LTE (Long Term Evolution) and Wi-Fi at the same time for convenience. Electronic platform were applied to build this monitoring system. Conclusions: Real-time monitoring system for OEL of hazardous chemicals in workplace was developed. Smart sensor can detect chemicals to complement monitoring of traditional workplace environmental monitoring such as short term and peak exposure. Further research is needed to expand the scope of application, improve reliability, and systematically application.

Development of Control Method for Event Recorder in High Speed Train (고속전철용 Event Recorder를 위한 제어 방식 개발)

  • Song, Gyu-Youn;Yim, Hyun-Jae;Chang, Tae-Wook
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.1182-1188
    • /
    • 2011
  • By storing various train information in running high speed train, we can analyze the cause of train accident efficiently. we have developed the smart and high available control method to control and manage the hardware modules. The hardware modules for event recorder consist CPU, Digital Input and Output, Pulse Input, Communication, Control Panel and Crash Protected Memory. The real time operation system is used to totally control and manage the various hardware modules. The main function of control method is collection of train information, calculation of train speed, interface with other on-board control system, storing and retrieving train information, and communication with Control Panel. In Control Panel, it displays the current train speed and the status of event recorder effectively. Also user interface is provided in Control Panel.

  • PDF

The Design of Library System using the Cloud Environment Based on the Raspberry pi

  • Park, Sungbin;Lee, Jong-Yong;Jung, Kye-Dong
    • International journal of advanced smart convergence
    • /
    • v.4 no.1
    • /
    • pp.31-34
    • /
    • 2015
  • Recently, the various types of data are began to increase. In order to manage the data efficiently, a variety of cloud services are being made. However, while providing a cloud service, the problem is the cost and waste a lot of human power to manage the data that is generated and managed by the server. To solve this problem, it is build the cloud environment using a single board computer with Raspberry pi. In this paper, we used Raspberry pi as a cloud server to provide services for the users. And we construct a Total Server to manage the generated data. It can separate the processing of data and the provision of services. We ensure the efficient operation by building a cloud environment with Raspberry pi and by managing the data which generated in cloud environment with the total server.

Fundamental Research of Strain-based Wireless Sensor Network for Structural Health Monitoring of Highrise building (초고층 건물의 건전성 감시를 위한 변형률 기반 무선 센서 네트워크 기법의 기초적 연구)

  • Jung, Eun-Su;Park, Hyo-Seon;Choi, Suk-Won;Cha, Ho-Jung
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.429-432
    • /
    • 2007
  • For smart structure technologies, the interests in wireless sensor networks for structural health monitoring are growing. The wireless sensor networks reduce the installation of the wire embedded in the whole structure and save the costs. But the wireless sensor networks have lots of limits and there are lots of researches and developments of wireless sensor and the network for data process. Most of the researches of wireless sensor network is applying to the civil engineering structure and the researches for the highrise building are required. And strain-based SHM gives the local damage information of the structures which acceleration-based SHM can not. In this paper, concept of wireless sensor network for structural health monitoring of highrise building is suggested. And verifying the feasibility of the strain-based SHM a strain sensor board has developed and tested by experiments.

  • PDF

Damage assessment of structures - an US air force office of scientific research structural mechanics perspective

  • Giurgiutiu, Victor
    • Smart Structures and Systems
    • /
    • v.6 no.2
    • /
    • pp.135-146
    • /
    • 2010
  • This paper presents the perspective of the Structural Mechanics program of the Air Force Office of Scientific Research (AFOSR) on the damage assessment of structures for the period 2006-2009 when the author was serving as Program Manager at AFOSR. It is found that damage assessment of structures plays a very important role in assuring the safety and operational readiness of US Air Force fleet. The current fleet has many aging aircraft, which poses a considerable challenge for the operators and maintainers. The nondestructive evaluation technology is rather mature and able to detect damage with considerable reliability during the periodic maintenance inspections. The emerging structural health monitoring methodology has great potential, because it will use on-board damage detection sensors and systems, will be able to offer on-demand structural health bulletins. Considerable fundamental and applied research is still needed to enable the development, implementation, and dissemination of structural health monitoring technology.