• Title/Summary/Keyword: Smart Applications

Search Result 1,847, Processing Time 0.028 seconds

Quantitative analysis of glycerol concentration in red wine using Fourier transform infrared spectroscopy and chemometrics analysis

  • Joshi, Rahul;Joshi, Ritu;Amanah, Hanim Zuhrotul;Faqeerzada, Mohammad Akbar;Jayapal, Praveen Kumar;Kim, Geonwoo;Baek, Insuck;Park, Eun-Sung;Masithoh, Rudiati Evi;Cho, Byoung-Kwan
    • Korean Journal of Agricultural Science
    • /
    • v.48 no.2
    • /
    • pp.299-310
    • /
    • 2021
  • Glycerol is a non-volatile compound with no aromatic properties that contributes significantly to the quality of wine by providing sweetness and richness of taste. In addition, it is also the third most significant byproduct of alcoholic fermentation in terms of quantity after ethanol and carbon dioxide. In this study, Fourier transform infrared (FT-IR) spectroscopy was employed as a fast non-destructive method in conjugation with multivariate regression analysis to build a model for the quantitative analysis of glycerol concentration in wine samples. The samples were prepared by using three varieties of red wine samples (i.e., Shiraz, Merlot, and Barbaresco) that were adulterated with glycerol in concentration ranges from 0.1 to 15% (v·v-1), and subjected to analysis together with pure wine samples. A net analyte signal (NAS)-based methodology, called hybrid linear analysis in the literature (HLA/GO), was applied for predicting glycerol concentrations in the collected FT-IR spectral data. Calibration and validation sets were designed to evaluate the performance of the multivariate method. The obtained results exhibited a high coefficient of determination (R2) of 0.987 and a low root mean square error (RMSE) of 0.563% for the calibration set, and a R2 of 0.984 and a RMSE of 0.626% for the validation set. Further, the model was validated in terms of sensitivity, selectivity, and limits of detection and quantification, and the results confirmed that this model can be used in most applications, as well as for quality assurance.

Intelligent Hospital Information System Model for Medical AI Research/Development and Practical Use (의료인공지능 연구/개발 및 실용화를 위한 지능형 병원정보시스템 모델)

  • Shon, Byungeun;Jeong, Sungmoon
    • Journal of the Korea Convergence Society
    • /
    • v.13 no.3
    • /
    • pp.67-75
    • /
    • 2022
  • Medical information is variously generated not only from medical devices but also from electronic devices. Recently, related convergence technologies from big data collection in healthcare to medical AI products for patient's condition analysis are rapidly increasing. However, there are difficulties in applying them because of independent developmental procedures. In this paper, we propose an intelligent hospital information system (iHIS) model to simplify and integrate research, development and application of medical AI technology. The proposed model includes (1) real-time patient data management, (2) specialized data management for medical AI development, and (3) real-time monitoring for patient. Using this, real-time biometric data collection and medical AI specialized data generation from patient monitoring devices, as well as specific AI applications of camera-based patient gait analysis and brain MRA-based cerebrovascular disease analysis will be introduced. Based on the proposed model, it is expected that it will be used to improve the HIS by increasing security of data management and improving practical use through consistent interface platformization.

Development of a Centrifugal Microreactor for the Generation of Multicompartment Alginate Hydrogel (다중 알긴산 입자제조를 위한 원심력 기반 미세유체 반응기 개발)

  • Ju-Eon, Jung;Kang, Song;Sung-Min, Kang
    • Applied Chemistry for Engineering
    • /
    • v.34 no.1
    • /
    • pp.23-29
    • /
    • 2023
  • Microfluidic reactors have been made to achieve significant development for the generation of new functional materials to apply in a variety of fields. Over the last decade, microfluidic reactors have attracted attention as a user-friendly approach that is enabled to control physicochemical parameters such as size, shape, composition, and surface property. Here, we develop a centrifugal microfluidic reactor that can control the flow of fluid based on centrifugal force and generate multifunctional particles of various sizes and compositions. A centrifugal microfluidic reactor is fabricated by combining microneedles, micro- centrifuge tubes, and conical tubes, which are easily obtained in the laboratory. Depending on the experimental control param- eters, including centrifuge rotation speed, alginate concentration, calcium ion concentration, and distance from the needle to the calcium aqueous solution, this strategy not only enables the generation of size-controlled microparticles in a simple and reproducible manner but also achieves scalable production without the use of complicated skills or advanced equipment. Therefore, we believe that this simple strategy could serve as an on-demand platform for a wide range of industrial and academic applications, particularly for the development of advanced smart materials with new functionalities in biomedical engineering.

Composite-Based Material and Process Technology Review for Improving Performance of Piezoelectric Energy Harvester (압전 에너지 수확기의 성능 향상을 위한 복합재료 기반 소재 및 공정 기술 검토)

  • Kim, Geon Su;Jang, Ji-un;Kim, Seong Yun
    • Composites Research
    • /
    • v.34 no.6
    • /
    • pp.357-372
    • /
    • 2021
  • The energy harvesting device is known to be promising as an alternative to solve the resource shortage caused by the depletion of petroleum resources. In order to overcome the limitations (environmental pollution and low mechanical properties) of piezoelectric elements capable of converting mechanical motion into electrical energy, many studies have been conducted on a polymer matrix-based composite piezoelectric energy harvesting device. In this paper, the output performance and related applications of the reported piezoelectric composites are reviewed based on the applied materials and processes. As for the piezoelectric fillers, zinc oxide, which is advantageous in terms of eco-friendliness, biocompatibility, and flexibility, as well as ceramic fillers based on lead zirconate titanate and barium titanate, were reviewed. The polymer matrix was classified into piezoelectric polymers composed of polyvinylidene fluoride and copolymers, and flexible polymers based on epoxy and polydimethylsiloxane, to discuss piezoelectric synergy of composite materials and improvement of piezoelectric output by high external force application, respectively. In addition, the effect of improving the conductivity or the mechanical properties of composite material by the application of a metal or carbon-based secondary filler on the output performance of the piezoelectric harvesting device was explained in terms of the structure of the composite material. Composite material-based piezoelectric harvesting devices, which can be applied to small electronic devices, smart sensors, and medicine with improved performance, can provide potential insights as a power source for wireless electronic devices expected to be encountered in future daily life.

Design of a Greenhouse Monitoring System using Arduino and Wireless Communication (아두이노와 무선통신을 이용한 온실 환경 계측 시스템 설계)

  • Sung, Bo Hyun;Cho, Young-Yeol
    • Journal of Bio-Environment Control
    • /
    • v.31 no.4
    • /
    • pp.452-459
    • /
    • 2022
  • One of the important factors among the smart farm factors is environmental measurement. This study tried to design an environmental measurement monitoring system through Bluetooth wireless communication with LoRa using the open source programs Arduino, App Inventor, and Node Red. This system consists of Arduino, LoRa shield, temperature and humidity sensor (SHT10), and carbon dioxide sensor (K30). The environmental measurement system is configured as a system that allows the sensor to collect environmental data and transmit it to the user through wireless communication to conveniently monitor the farm environment. As libraries used in the Arduino program, LoRa.h, Sensirion.h, LiquidCrystal_I2C.h and K30_I2C.h were used. When receiving environmental data from the sensor at regular intervals, coding using average value was used for data stabilization. An Android-based app was developed using Node Red and App Inventor program as the user interface. It can be seen that the environmental data for the sensor is well collected with the screen output to the serial screen of Arduino, the screen of the smartphone, and the user interface of Node Red. Through these open source-based platforms and programs will be applied to various agricultural applications.

Mechanical Properties of Fiber-reinforced Cement Composites according to a Multi-walled Carbon Nanotube Dispersion Method (다중벽 탄소나노튜브의 분산방법에 따른 섬유보강 시멘트복합체의 역학적 특성)

  • Kim, Moon-Kyu;Kim, Gyu-Yong;Pyeon, Su-Jeong;Choi, Byung-Cheol;Lee, Yae-Chan;Nam, Jeong-Soo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.24 no.2
    • /
    • pp.203-213
    • /
    • 2024
  • This study delves into the mechanical properties of fiber-reinforced cement composites(FRCC) concerning the dispersion method of multi-walled carbon nanotubes(MWCNTs). MWCNTs find utility in industrial applications, particularly in magnetic sensing and crack detection, owing to their diverse properties including heat resistance and chemical stability. However, current research endeavors are increasingly directed towards leveraging the electrical properties of MWCNTs for self-sensing and smart sensor development. Notably, achieving uniform dispersion of MWCNTs poses a challenge due to variations in researchers' skills and equipment, with excessive dispersion potentially leading to deterioration in mechanical performance. To address these challenges, this study employs ultrasonic dispersion for a defined duration along with PCE surfactant, known for its efficacy in dispersion. Test specimens of FRCC are prepared and subjected to strength, drawing, and direct tensile tests to evaluate their mechanical properties. Additionally, the influence of MWCNT dispersion efficiency on the enhancement of FRCC mechanical performance is scrutinized across different dispersion methods.

Performance Evaluation and Analysis on Single and Multi-Network Virtualization Systems with Virtio and SR-IOV (가상화 시스템에서 Virtio와 SR-IOV 적용에 대한 단일 및 다중 네트워크 성능 평가 및 분석)

  • Jaehak Lee;Jongbeom Lim;Heonchang Yu
    • The Transactions of the Korea Information Processing Society
    • /
    • v.13 no.2
    • /
    • pp.48-59
    • /
    • 2024
  • As functions that support virtualization on their own in hardware are developed, user applications having various workloads are operating efficiently in the virtualization system. SR-IOV is a virtualization support function that takes direct access to PCI devices, thus giving a high I/O performance by minimizing the need for hypervisor or operating system interventions. With SR-IOV, network I/O acceleration can be realized in virtualization systems that have relatively long I/O paths compared to bare-metal systems and frequent context switches between the user area and kernel area. To take performance advantages of SR-IOV, network resource management policies that can derive optimal network performance when SR-IOV is applied to an instance such as a virtual machine(VM) or container are being actively studied.This paper evaluates and analyzes the network performance of SR-IOV implementing I/O acceleration is compared with Virtio in terms of 1) network delay, 2) network throughput, 3) network fairness, 4) performance interference, and 5) multi-network. The contributions of this paper are as follows. First, the network I/O process of Virtio and SR-IOV was clearly explained in the virtualization system, and second, the evaluation results of the network performance of Virtio and SR-IOV were analyzed based on various performance metrics. Third, the system overhead and the possibility of optimization for the SR-IOV network in a virtualization system with high VM density were experimentally confirmed. The experimental results and analysis of the paper are expected to be referenced in the network resource management policy for virtualization systems that operate network-intensive services such as smart factories, connected cars, deep learning inference models, and crowdsourcing.

A Study about Impact of Mindfulness on Perceived Factors of Information Technology Acceptance (마음챙김이 정보기술 수용의 인지적 요인에 미치는 영향 연구)

  • Hyun Mo Kim;Ying Ying Pang;Joo Seok Park
    • Information Systems Review
    • /
    • v.21 no.1
    • /
    • pp.1-22
    • /
    • 2019
  • Mindfulness is the process of actively noticing new things. Today, companies have introduced and run mindfulness programs because the mindfulness has possible applications of productivity and innovation in corporation. However, role of mindfulness has not been clearly investigated in behavior research of Information System. The purpose of this study is to confirm the effects of mindfulness on technology acceptance process. Based on UTAUT Model, we examined how mindfulness in technology acceptance process moderate antecedent factors of acceptance intentions and use behavior. For empirical research, we conducted a survey on acceptance of smart watch of internet of things for employees of companies applying the mindfulness programs. then, we analyzed survey sample in empirical methodologies. Based on the empirical analysis, cognizance of alternative technologies in mindfulness factors increased the impact of performance expectancy on acceptance intention. Novelty seeking in mindfulness factors increased the impact of effort expectancy on acceptance intention. Awareness of local context in mindfulness factors decreased the impact of social influence on acceptance intention. engagement with technology in mindfulness factors increased the impact of facilitating conditions on use behavior. This study suggests academic implications and practical implications based on the results of the research. The implications will help to support and extend the theory of technology acceptance model while providing practical insights for IT acceptance by suggesting ways to utilize mindfulness in corporation.

Application of Greenhouse Climate Management Model for Educational Simulation Design (교육용 시뮬레이션 설계를 위한 온실 환경 제어 모델의 활용)

  • Yoon, Seungri;Kim, Dongpil;Hwang, Inha;Kim, Jin Hyun;Shin, Minju;Bang, Ji Wong;Jeong, Ho Jeong
    • Journal of Bio-Environment Control
    • /
    • v.31 no.4
    • /
    • pp.485-496
    • /
    • 2022
  • Modern agriculture is being transformed into smart agriculture to maximize production efficiency along with changes in the 4th industrial revolution. However, rural areas in Korea are facing challenges of aging, low fertility, and population outflow, making it difficult to transition to smart agriculture. Among ICT technologies, simulation allows users to observe or experience the results of their choices through imitation or reproduction of reality. The combination of the three-dimension (3D) model and the greenhouse simulator enable a 3D experience by virtual greenhouse for fruits and vegetable cultivation. At the same time, it is possible to visualize the greenhouse under various cultivation or climate conditions. The objective of this study is to apply the greenhouse climate management model for simulation development that can visually see the state of the greenhouse environment under various micrometeorological properties. The numerical solution with the mathematical model provided a dynamic change in the greenhouse environment for a particular greenhouse design. Light intensity, crop transpiration, heating load, ventilation rate, the optimal amount of CO2 enrichment, and daily light integral were calculated with the simulation. The results of this study are being built so that users can be linked through a web page, and software will be designed to reflect the characteristics of cladding materials and greenhouses, cultivation types, and the condition of environmental control facilities for customized environmental control. In addition, environmental information obtained from external meteorological data, as well as recommended standards and set points for each growth stage based on experiments and research, will be provided as optimal environmental factors. This simulation can help growers, students, and researchers to understand the ICT technologies and the changes in the greenhouse microclimate according to the growing conditions.

Characteristic Study of Small-sized and Planer Resonator for Mobile Device in Magnetic Wireless Power Transfer (소형 모바일 기기용 공진형 무선전력전송 시스템의 공진기 평면화 및 소형화에 따른 특성 연구)

  • Lee, Hoon-Hee;Jung, Chang-Won
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.4
    • /
    • pp.16-21
    • /
    • 2017
  • In this paper, a Small-sized and planer resonator design of Magnetic Resonance - Wireless Power Transfer(MR-WPT) were proposed for practical applications of mobile devices, such as a laptop, a smart-phone and a tablet pc. The proposed MR-WPT system were based on four coil MR-WPT and designed as a transmitter part (Tx) and a receiver part (Rx) both are the same shape with the same loop and resonator. There are four different spiral coil type of resonators with variable of line length, width, gap and turns in $50mm{\times}50mm$ size. The both of top and bottom side of substrate(acrylic; ${\varepsilon}_r=2.56$, tan ${\delta}=0.008$) ere used to generate high inductance and capacitance in limited small volume. Loops were designed on the same plane of resonator to reduce their volume, and there are three different size. The proposed MR-WPT system were fabricated with two acrylic substrate plane of Tx and Rx each, the Rx and Tx loops and resonators were fabricated of copper sheets. There are 12 combinations of 3 loops and 4 resonators, each combination were measured to calculate transfer efficiency and resonance frequency in transfer distance from 1cm to 5cm. The measured results, the highest transfer efficiency was about 70%, and average transfer efficiency was 40%, on the resonance frequency was about 6.78 MHz, which is standard band by A4WP. We proposed small-sized and planer resonator of MR-WPT and showed possibility of mobile applications for small devices.