• Title/Summary/Keyword: Small-scale

Search Result 5,409, Processing Time 0.036 seconds

A Study on the Availability Evaluation with Failure Density Function of Equipment of Small-scale Plant (소규모 플랜트 기자재의 고장밀도함수가 가용도에 미치는 영향 평가)

  • Lee, Hongcheol;Hwang, Inju
    • The KSFM Journal of Fluid Machinery
    • /
    • v.19 no.3
    • /
    • pp.33-36
    • /
    • 2016
  • The investigation on the verification of availability simulation for small-scale plant has been carried out. This study focuses on the availability variation induced by number of equipment and iteration with failure density function. The equipment classification of small-scale plant and failure type and the methodologies on Monte-Carlo simulation are established. The availability deviation with programs showed under Max. 1.7% for the case of normal function. This method could be used to availability evaluation of small-scale plant, but calibration of the failure density function is necessary for general application.

A Proposal of Urban Housing Models and a Feasibility Study for the Application of Small-scale Development in Residential Blocks (일반주거지역에서의 소규모 집합주택 개발가능성 검토 및 모델 제안)

  • 홍민규;양우현
    • Journal of the Korean housing association
    • /
    • v.13 no.6
    • /
    • pp.79-88
    • /
    • 2002
  • The intent of this study is to investigate the feasibility of small-scale developments in residential blocks in the city, and to propose development strategies and models. This research is done on the premises that large housing developments ignore the urban structure of its own quality, whitens on-lot-based multi-unit housing developments fail to maintain amenity and livability in residential blocks. For solving these shortcomings, this research proposes the possibility of small-scale housing development models as an alternative development system. And some residential blocks were selected as case sites and analyzed into typical block types, to support the proposal of pertinent development types. Each type was investigated and discussed in terms of development feasibility and proper development strategies. Finally, three development schemes are proposed as prototypical models for the best application in residential blocks.

An Experimental Study on the Performance of a Mixed Mode Type Small Scale MR Damper (복합모드형 소형 MR감쇠장치 성능에 관한 실험적 연구)

  • Lee, Sang-Hyun;Min, Kyung-Won;Lee, Myoung-Kyu;Park, Eun-Churn
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2005.03a
    • /
    • pp.461-468
    • /
    • 2005
  • In this paper, mixed mode magneto-rheological (MR) damper, which is applicable for vibration control of a small scale multi-story structure, is devised. First, the schematic configurations of the shear, flow, and mixed mode MR dampers are described with design constraints and then the analytical models to predict the field-dependent damping forces are derived for each type. Second, an appropriate size of the mixed mode MR damper is manufactured and its field-dependent damping characteristics are evaluated in time domain. Finally, the performance of the manufactured MR damper which is semi-actively applied to a small scale building excited by earthquake load, is numerically evaluated.

  • PDF

High-Temperature Structural Analysis on the Small-Scale PHE Prototype using Weld Properties (용접물성치를 고려한 소형 공정열교환기 시제품의 고온구조해석)

  • Song, Kee-Nam;Hong, Sung-Deok;Park, Hong-Yoon
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.8 no.2
    • /
    • pp.1-6
    • /
    • 2012
  • A PHE (Process Heat Exchanger) in a nuclear hydrogen system is a key component required to transfer heat energy of $950^{\circ}C$ generated in a VHTR (Very High Temperature gas cooled Reactor) to the chemical reaction that yields a large quantity of hydrogen. A small-scale PHE prototype made of Hastelloy-X is being tested in a small-scale gas loop at Korea Atomic Energy Research Institute. Previous research on the high-temperature structural analysis of the small-scale PHE prototype had been performed only using parent material properties. In this study, high-temperature structural analysis using weld properties in weld zone was performed and the analysis results compared with the previous research.

A Study on Design of Aged Small Scale Institutional Household (소규모 노인공공가정설계에 관한 탐색적 연구)

  • 두경자
    • Journal of the Korean Home Economics Association
    • /
    • v.41 no.12
    • /
    • pp.187-205
    • /
    • 2003
  • This study is to design aged institutional household on a small scale, also the purpose of this study is to provide basic material for management of small scale institutional household and policy establishment that could help the aged well-being. Design of research is accomplished after the review of related literatures. The propositions of design are 3s follows; region:seoul suburbs(2 hours' distance) building:fourth stories(The building-to-land ratio 25%, capacious ratio 100%, in environmental affinity.) object:75 years and over aged 15 women cost:deposit and living month expenses contract between the manager and the desired occupant or concerned family term of validity:As long as occupant want.

Prediction of Hover Performance on Development of Small-Scale UAV using Numerical and Experimental Approach (실험을 통한 소형 무인헬리콥터의 공력인자 도출 및 제자리 비행 성능 예측)

  • Lee, Byoung-Eon;Kim, Sang-Deok;Byun, Young-Seop;Song, Jun-Beum;Kang, Beom-Soo
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2548-2553
    • /
    • 2008
  • Prediction of the rotor blade performance is important for determining design factors such as weight and size in development of a small-scale helicopter. Generally, prediction of helicopter performance means the estimation of the power required for a given flight condition. However, due to lack of test data and analyzed results for small-scale rotor blade operated at low Reynolds numbers ($Re{\approx}10^5$), this is not an easy task. As an initial research, this work performs a modeling of a single rotor configuration with FLIGHTLAB and a experimental research with rotor test bed. In this process, we performed small-scale isolated single rotor by experimental and numerical method and achieved good agreement of the hover performance on the test data and simulation results.

  • PDF

Study on the Influence of Applied Forces Acting on Small Scale Cantilever Beams (미소 외팔보의 동적해석 시 작용하는 힘들의 영향도에 관한 연구)

  • Kim, Kwan-Yong;Yoo, Hong-hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.702-707
    • /
    • 2005
  • The equations of motion of the structure, which is a small scale cantilever beam considering electrostatic force, squeeze film damping and van der Waals force are obtained employing Galerkin's method based on Euler beam theory. The influence of each force is investigated fur changing the size of a small scale cantilever beam which assumed uniform shape. Also the forces which are affected by the required size of a small scale cantilever beam for manufacturing are forecasted.

  • PDF

A Study on Korean Sentiment Analysis Rate Using Neural Network and Ensemble Combination

  • Sim, YuJeong;Moon, Seok-Jae;Lee, Jong-Youg
    • International Journal of Advanced Culture Technology
    • /
    • v.9 no.4
    • /
    • pp.268-273
    • /
    • 2021
  • In this paper, we propose a sentiment analysis model that improves performance on small-scale data. A sentiment analysis model for small-scale data is proposed and verified through experiments. To this end, we propose Bagging-Bi-GRU, which combines Bi-GRU, which learns GRU, which is a variant of LSTM (Long Short-Term Memory) with excellent performance on sequential data, in both directions and the bagging technique, which is one of the ensembles learning methods. In order to verify the performance of the proposed model, it is applied to small-scale data and large-scale data. And by comparing and analyzing it with the existing machine learning algorithm, Bi-GRU, it shows that the performance of the proposed model is improved not only for small data but also for large data.

Fundamental and conventional computer simulation for the stability of non-uniform systems

  • Wang, Chunping;Chen, Keming
    • Advances in nano research
    • /
    • v.13 no.2
    • /
    • pp.135-146
    • /
    • 2022
  • The accurate assessment of the performance of nonuniform systems requires a thorough understanding of stability analysis. As a result, the theoretical modeling of the influence of various variables on the performance of small-scale nonuniform structures with conventional and non-conventional geometries is presented in this paper. According to the fundamental computer simulation based on mathematical and mechanical principles, the stability of the nonuniform structures is examined. Thus, a numerical procedure is used to simulate the stability and instability characteristics of the nonuniform small-scale structures via computer aid. Theoretic simulation methods provide a great deal of the design and production of small-scale structures at a low cost compared to experimental simulations. Thus, this paper provides a good presentation of the stability analysis of the nonuniform nanoscale structures with high accuracy without actual experimental.

A Study on the Evaluations of Damage Impact due to VCE in Liquid Hydrogen Charging Station (액화수소 충전스테이션에서 VCE로 인한 피해영향평가에 관한 연구)

  • Lee, Suji;Chon, Young Woo;Lee, Ik Mo;Hwang, Yong Woo
    • Journal of the Korean Institute of Gas
    • /
    • v.21 no.5
    • /
    • pp.56-63
    • /
    • 2017
  • Hydrogen charging station was invested and supported around the world. In this study, the extent of damage caused by VCE in the charging station handling liquefied hydrogen was calculated, and the human and material damage was estimated through the Probit model. In addition The optimal height of vent stack for low temperature hydrogen was set. The damage range is 8.24m in small scale, 14.10m in medium scale, and 22.38m in large scale based on interest overpressure 6.9kPa. In case of death due to pulmonary hemorrhage, 50m of the small and medium scale and 100m of the large scale were injured. Structural damage was 200m in small scale, 300m in medium scale and 500m in large scale. The optimum height of the vent stack is 4.7 m in small scale, 8.8 m in medium scale and 16.9 m in large scale.