• Title/Summary/Keyword: Small-Roughness Parameters

Search Result 36, Processing Time 0.03 seconds

An Improved Semi-Empirical Model for Radar Backscattering from Rough Sea Surfaces at X-Band

  • Jin, Taekyeong;Oh, Yisok
    • Journal of electromagnetic engineering and science
    • /
    • v.18 no.2
    • /
    • pp.136-140
    • /
    • 2018
  • We propose an improved semi-empirical scattering model for X-band radar backscattering from rough sea surfaces. This new model has a wider validity range of wind speeds than does the existing semi-empirical sea spectrum (SESS) model. First, we retrieved the small-roughness parameters from the sea surfaces, which were numerically generated using the Pierson-Moskowitz spectrum and measurement datasets for various wind speeds. Then, we computed the backscattering coefficients of the small-roughness surfaces for various wind speeds using the integral equation method model. Finally, the large-roughness characteristics were taken into account by integrating the small-roughness backscattering coefficients multiplying them with the surface slope probability density function for all possible surface slopes. The new model includes a wind speed range below 3.46 m/s, which was not covered by the existing SESS model. The accuracy of the new model was verified with two measurement datasets for various wind speeds from 0.5 m/s to 14 m/s.

Optimization of Surface Roughness of STS 304 in a Turning Process (STS304합금의 선삭가공에서 표면거칠기의 최적화)

  • Choi, Man Sung
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.1
    • /
    • pp.59-64
    • /
    • 2017
  • The general manufacturing problem can be described as the achievement of a predefined product quality with given equipment, cost and time constraints. Unfortunately, for some quality characteristics of a product such as surface roughness it is hard to ensure that these requirements will be met. Stainless steels STS 304 is frequently used as shaft materials in small fiber reinforced polymer(FRP) fishing boats. In this work, the dry turning parameters of STS 304 are optimized by using Taguchi method. The experiments were conducted at three different cutting speeds with three different feed and three different depth of cut. The cutting parameters are optimized using signal to noise ratio and the analysis of variance. The effects of cutting speed and feed on surface roughness was analyzed. The results revealed that the spindle speed is the more significant parameter influencing the surface roughness.

  • PDF

Roughness and micro pit defects on surface of SUS 430 stainless steel strip in cold rolling process

  • Li, Changsheng;Zhu, Tao;Fu, Bo;Li, Youyuan
    • Advances in materials Research
    • /
    • v.4 no.4
    • /
    • pp.215-226
    • /
    • 2015
  • Experiment on roughness and micro pit defects of SUS 430 ferrite stainless steel was investigated in laboratory. The relation between roughness and glossiness with reduction in height, roll surface roughness, emulsion parameters was analyzed. The surface morphology of micro pit defects was observed by SEM, and the effects of micro pit defects on rolling reduction, roll surface roughness, emulsion parameters, lubrication oil in deformation zone and work roll diameter were discussed. With the increasing of reduction ratio strip surface roughness Ra(s), Rp(s) and Rv(s) were decreasing along rolling and width direction, the drop value in rolling direction was faster than that in width direction. The roughness and glossiness were obtained under emulsion concentration 3% and 6%, temperature $55^{\circ}C$ and $63^{\circ}C$, roll surface roughness $Ra(r)=0.5{\mu}m$, $Ra(r)=0.7{\mu}m$ and $Ra(r)=1.0{\mu}m$. The glossiness was declined rapidly when the micro defects ratio was above 23%. With the pass number increasing, the micro pit defects were reduced, uneven peak was decreased and gently along rolling direction. The micro pit defects were increased with the roll surface roughness increase. The defects ratio was declined with larger gradient at pass number 1 to 3, but gentle slope at pass number 4 to 5. When work roll diameter was small, bite angle was increasing, lubrication oil in micro pit of deformation zone was decreased, micro defects were decreased, and glossiness value on the surface of strip was increased.

Prediction of Surface Roughness in Hole Machining Using an Endmill (엔드밀을 활용한 홀 가공 시 표면거칠기 예측에 관한 연구)

  • Chun, Se-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.10
    • /
    • pp.42-47
    • /
    • 2019
  • Helical machining is an efficient method for machining holes using an endmill. In this study, a surface roughness prediction model was constructed for improving the productivity of hole machining. Experiments were conducted to form holes by the helical machining of AL6061-T4 aluminum sheets and correlation analysis was performed to examine the relationships between the variables based on the measured results. Meanwhile, a regression analysis technique was used to construct and evaluate the prediction model. Through these analyses, the parameter which has the greatest influence on the surface roughness when the hole is formed by the helical machining is the feed, followed by the number of revolutions of the endmill. Moreover, for the axial feed of the endmill, it was concluded that the influence of the surface roughness is small compared to the other two parameters but it is a factor worth considering to improve the accuracy when constructing the predictive model.

Impacts of Surface Roughness Integration Using Remote Sensing Data: Concentration of Flood Flow Variation (원격탐사자료를 활용한 지표면 조도계수 통합의 영향: 홍수유출 변화를 중심으로)

  • Kang, Shin-Uk;Rieu, Seung-Yup;Lee, Kil-Ha;Hwang, Man-Ha
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.15 no.2 s.40
    • /
    • pp.33-42
    • /
    • 2007
  • A physical-based aggregation method was suggested to estimate surface roughness, which adequately represents the spatial heterogeneity of vegetation factors, from land cover property obtained from the remote sensing data. For the sensitivity analysis of surface roughness, the peak flow, peak time, and total volume were simulated by the NWS-PC. Effects of surface roughness estimated by three different integration methods (predominant, arithmetic mean, and aggregation approach) on the conceptual rainfall-runoff model parameters was analyzed. In the preliminary sensitivity test to surface roughness, the peak time had 10% variation and total volume had 2% variation. The peak time increased with surface roughness. A physical-based aggregation method was better than the existing method in the Soyanggang Dam basin for the results of STDEV, RMSE, NSE, and PME, but difference between them were small. The parameters related on the total baseflow were changed significantly with change of the surface roughness.

  • PDF

An innovative CAD-based simulation of ball-end milling in microscale

  • Vakondios, Dimitrios G.;Kyratsis, Panagiotis
    • Advances in Computational Design
    • /
    • v.5 no.1
    • /
    • pp.13-34
    • /
    • 2020
  • As small size and complex metal machining components demand increases, cutting processes in microscale become necessary. Ball-end milling is a commonly used finishing process, which nowadays can be applied in the microscale size. Surface quality and dimensional accuracy are two basic parameters that affect small size components in their assembly and functionality. Thus, good quality can be achieved by optimizing the cutting conditions of the procedure. This study presents a 3D simulation model of ball-end milling in microscale developed in a commercial CAD software and its optical and computing results. These carried out results are resumed to surface topomorphy, surface roughness, chip geometry and cutting forces calculations that arising during the cutting process. A great number of simulations were performed in a milling machine centre, applying the discretized kinematics of the procedure and the final results were compared with measurements of Al7075-T651 experiments.

Design Optimization by the Correlation between the Design Parameter and the Sound Quality of Small Turbo-fan (소형 터보홴 설계인자와 음질의 상관관계에 의한 설계 최적화)

  • Kim, Hooi-Joong;Jung, Young-Gyu;Lee, Jung-Soo;Lee, Seung-Bae
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.5 s.110
    • /
    • pp.485-494
    • /
    • 2006
  • The state-of-the-art of low-noise fan design usually includes the consideration of optimal sound level and sound quality. The influential design parameters of the noise level by the centrifugal fan were selected based on the preliminary test. The centrifugal fans were designed according to the experiment plan method by specifying the selected design parameters. The experiment with these machined mock-up's of centrifugal impellers suggested the major design parameters among many, having impacts upon the indices of sound quality (e.g. loudness, sharpness, roughness and fluctuation strength) at the same operation point. With the response surface method, the major design parameters selected thereafter were analyzed to estimate each contribution upon the sound quality of the centrifugal fan, and the optimal values were drawn by the consideration of the sound quality levels and their regression equations. In addition, the validity of the regression equations was numerically verified by means of the coefficient of determination. Furthermore, the mechanism by which the centrifugal fan impeller influences the determinants of its sound quality was suggested.

Cutting Characteristics of Quartz by Abrasive Waterjet (연마제 워터 제트에 의한 쿼츠의 절단특성)

  • Jin, Yun-Ho;Chung, Nam-Yong;Kim, Kyung-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.922-927
    • /
    • 2004
  • Abrasive waterjet (AWJ) cutting is an emerging technology for precision cutting of difficult-to-machining materials with the distinct advantages of no thermal effect, high machinability, high flexibility and small cutting forces. This paper investigated theoretical and experimental cutting characteristics associated with abrasive waterjet cutting of quartz GE214. It is shown that the proper variations of several cutting parameters such as waterjet pressure, cutting speed and cutting depth improve the roughness on workpiece surfaces produced by AWJ cutting. From the experimental results by AWJ cutting of quartz GE214, the optimal cutting conditions to improve the surface roughness were proposed and discussed.

  • PDF

Characteristics of the Momentum Equation in Open Channel Flow (개수로흐름 해석에서 운동량방정식의 특성)

  • Jeon, Min-Woo;Cho, Yong-Soo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.1111-1115
    • /
    • 2008
  • The relative magnitudes of the individual terms of the momentum equation are analyzed and compared by the analytical methods in open channel flow. The temporal variations of each term(local acceleration term, convective acceleration term, pressure force term, gravity force term, and friction force term) are analyzed for the influence factors to runoff expressed by the parameters of the momentum equation, stream slopes and roughness coefficients. The magnitudes of each term vary with the channel characteristics, especially when the roughness coefficients are dominant or for the mild stream slopes the pressure term can not be negligible. As a result of the characteristics of momentum equation in open channel flow, the acceleration terms are very small compared with the other terms. The magnitudes of local acceleration and convective acceleration offsets each other. The peak time of each term except the gravity term coincides with inflection point of the hydrograph rising limb each other.

  • PDF

Relation of AE and Polishing Parameters for Polishing Process Monitoring (연마가공감시를 위한 AE와 연마파라미터의 관계)

  • Kim, Hwa-Young;Kim, Jeong-Uk;Yoon, Hang-Mook;Ahn, Jung-Hwan;Kim, Sung-Ryul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.10 s.175
    • /
    • pp.90-98
    • /
    • 2005
  • A monitoring system is necessary to make the polishing process more reliable in order to ensure the high quality and performance of the final products. Generally, AE (Acoustic Emission) is known to be closely related to the material removal rate (MRR). As the surface becomes rougher, the MRR and AE increase. Therefore, the surface roughness can be indirectly estimated using the AE signal measured during the polishing. In this study, an AE sensor-based monitoring system was fabricated to detect the very small AE signal resulting from the friction between a tool and a workpiece during polishing. The performance of this monitoring system was estimated according to polishing conditions, the relation between the level of the AE RMS and the surface roughness during the polishing was investigated.