• 제목/요약/키워드: Small surface crack

검색결과 169건 처리시간 0.028초

Hertz 접촉하중하에서의 복수표면균열의 상호간섭 (Mutual Interference of Two Surface Cracks under Hertzian Contact Loading)

  • 김상우;김석삼
    • 대한기계학회논문집A
    • /
    • 제20권10호
    • /
    • pp.3048-3057
    • /
    • 1996
  • Analysis model containing two inclined surface cracks on semi-infinite elastic body is established and analyzed on the basis of linear fracture mechanics to examine mutual interference of two surface cracks. Muskhelishvili's complex stress functions are introduced and a set of singular integral equations is obtained for a dislocation density function. The stress intensity factors at crack tip are obtained by using the Gerasoulis'method. When two surface cracks are parallel and have the same length, the values of $K_1$and $\Delta K_11$(variation of $K_11$) for crack 1 and crack 2 decrease by the mutual interference of two surface cracks as the distance between the two surface cracks shortens. The effect of mutual interference is remarkable in high friction coefficient. In case that two surface cracks are parallel, the values of $K_1$and $\Delta K_11$for crack 2 decrease as the length ratio ot crack 2 to crack 1 becomes small. As the crack inclination angle rises, the value of $K_1$ and the mutual interference of $K_1$for crack 2 increase and the value of$\Delta K_11$ for crack 1 becomes smaller than that for crack 2.

회전굽힘응력하에서 환봉재의 미소표면균열의 성장거동해석 (Analysis of small surface crack growth of round bar under rotary bending stress)

  • 오환섭;이병권;박철희
    • 대한기계학회논문집A
    • /
    • 제22권1호
    • /
    • pp.160-169
    • /
    • 1998
  • The purpose of this study for the prediction of fatigue crack propagation behavior, Stress Intensity Factor(F) of round bar with 3-Dimensional half circular, semi-elliptical icro surface crack under rotary bending stress for the variable aspect, size, rotation angle was analyzed by Boundary Element Method (BEM). It is predicted that behavior of crack growth is half circular or circular crack (b/a.geq.1) and propagate to b/a.leq.0.85.

압입축에 발생하는 프레팅 피로균열 발생 및 진전 특성 실험 (Experimental Study on Fatigue Crack Initiation and Propagation due to Fretting Damage in Press-fitted Shaft)

  • 이동형;권석진;최재붕;김영진
    • 대한기계학회논문집A
    • /
    • 제31권6호
    • /
    • pp.701-709
    • /
    • 2007
  • To clarify the characteristics of surface damage due to fretting in press-fitted shaft, experimental methods were applied to small scale specimen with different bending load condition. Fatigue tests and interrupted fatigue tests of press-fitted specimen were carried out by rotate bending fatigue test. Macroscopic and microscopic characteristics were examined using scanning electron microscope (SEM), optical microscope or profilometer. It is found that small fatigue cracks are nucleated early in life regardless of bending stress, and thus the most portion of fatigue life on press fits can be considered to be crack propagation process. Most of surface cracks are initiated near the contact edge, and multiple cracks are nucleated and interconnected. Furthermore, the fretting wear rates at the contact edge are increased rapidly at the initial stage of total fatigue life. It is thus suggested that the fatigue crack nucleation and propagation process is strongly related to the evolution of surface profile by fretting wear in press fits.

표면균열을 갖는 원형봉재 시편을 이용한 고온 피로균열성장 연구 (A Study on Elevated Temperature Fatigue Crack Growth Using Round Bar Specimen with a Surface Crack)

  • 소태원;윤기봉
    • 대한기계학회논문집A
    • /
    • 제20권11호
    • /
    • pp.3415-3423
    • /
    • 1996
  • The compact tension specimen geometry has been widely used for measuring fatigue crack growth rates at elevated temperature when the fatigue load is under tension/tension condition. However, most of the elevated temperature components which have significant crack growth life experience fatigue load under tension/compression conditions. Thus test techniques are required since the compact tension specimen cannot be used for tension/compression loading. In this paper, a simplified test procedure for measureing fatigue crack growth rates is proposed, which employs a round bar specimen with a small surface crack. Fatigue crack growth rates under tension/ tension loading conditions at elevated temperature were measured according to the proposed procedure and compared with those previously measured by C/(T) specimens. Since both the measured crack growth rates were comparable, the fatigue crack growth rates under tension/ compression load can be reliably measured by the proposed procedure. For monitoring crack depth. DC electric potential method is employed and an optimal probe location and current input conditions were proposed.

취성재료의 소구충돌에 의한 충격손상 (I) (Impact Damage on Brittle Materials with Small Spheres (I))

  • 우수창;김문생;신형섭;이현철
    • 한국정밀공학회지
    • /
    • 제18권11호
    • /
    • pp.93-100
    • /
    • 2001
  • Brittle materials are very weak for impact because of typical characteristics which happen to be easily fractured with low fracture toughness and crack sensitivity. When brittle materials are subjected to impact due to small spheres, high contact pressure is occurred to impact surface and then local damage on specimen is developed, since there are little plastic deformations due to contact pressure compared to metals. This local damage is a dangerous factor which gives rise to final fracture of structures. In this research, the crack propagation process of soda lime glass by impact of small sphere is explained and the effects of the constraint conditions of impact spheres and materials for the material damage were studied by using soda-lime glass. that is the effects for the materials and sizes of impact ball, thickness of specimen and residual strength. Especially, this research has focused on the damage behavior of ring crack, cone crack and several kinds of cracks.

  • PDF

축단면 내 대칭위치에 존재하는 원공결함에서 발생하는 피로균열 거동 (The Characteristics of Fatigue Cracks Emanating from Small Hole Defects Located Opposite Position of the Shaft Cross Section)

  • 송삼홍;안일혁;이정무
    • 한국정밀공학회지
    • /
    • 제19권10호
    • /
    • pp.84-91
    • /
    • 2002
  • The shaft with the circular cross section have symmetric structural combination parts to keep the rotating balance. Hence the crack usually emanate from symmetric combination parts due to the stress concentration of these parts. In this study to estimate the fatigue behavior of symmetric cracks, the fatigue test was performed by using rotary bending tester and the specimen with symmetric defects in circular cross section. From the facts the characteristics of crack initiation and propagation on the symmetric surface cracks in circular cross section was examined. Also we observed the internal crack using oxidation coloring and investigated the fatigue behavior using the relationship between surface crack and internal crack. As a result of fatigue lift of symmetric cracks was reduced to 35% compared to single crack’s. We examined the characteristics of fatigue behavior in element with symmetric cracks using internal crack propagation rate and maximum stress intensity factor range obtained from approximation method.

작은 표면균열의 성장특성에 의한 수명예측 (A Fatigue Life Prediction by Growth Characteristics of a Small Surface Crack)

  • 서창민;임창순;강용구
    • 한국해양공학회지
    • /
    • 제3권2호
    • /
    • pp.617-617
    • /
    • 1989
  • This paper deals with a fatigue life prediction of a surface crack based on the experimentally obtained relationship between surface crack length ratio $a/a_{f}$ and cycle ratio $N/N_{f}$ using micro computer. Firstly $a/a_{f}$-$N/N_{f}$ curves obtained from experimental tests, were assumed as three curves UC(the upper limit curve), LC(the lower limit curve) and MC(the middle curve), and these were utilized to predict the fatigue life. Comparing the calculated values which represent the characteristics of crack growth behaviors from the three assumed curves with the experimental ones, it has been found that in the stable crack growth region, they coincide reasonably well each other. And the differences between the fatigue lives obtained from the assumed curves and the experimental fatigue life did not exceed 20%. Using the characteristics of $a/a_{f}$-$N/N_{f}$ curves, it is possible to predict the da/dN-Kmax curves and the S-$N_{f}$ curves.

작은 표면균열의 성장특성에 의한 수명예측 (A Fatigue Life Prediction by Growth Characteristics of a Small Surface Crack)

  • 서창민;임창순;강용구
    • 한국해양공학회지
    • /
    • 제3권2호
    • /
    • pp.108-117
    • /
    • 1989
  • This paper deals with a fatigue life prediction of a surface crack based on the experimentally obtained relationship between surface crack length ratio $a/a_{f}$ and cycle ratio $N/N_{f}$ using micro computer. Firstly $a/a_{f}$-$N/N_{f}$ curves obtained from experimental tests, were assumed as three curves UC(the upper limit curve), LC(the lower limit curve) and MC(the middle curve), and these were utilized to predict the fatigue life. Comparing the calculated values which represent the characteristics of crack growth behaviors from the three assumed curves with the experimental ones, it has been found that in the stable crack growth region, they coincide reasonably well each other. And the differences between the fatigue lives obtained from the assumed curves and the experimental fatigue life did not exceed 20%. Using the characteristics of $a/a_{f}$-$N/N_{f}$ curves, it is possible to predict the da/dN-Kmax curves and the S-$N_{f}$ curves.

  • PDF

Deep learning of sweep signal for damage detection on the surface of concrete

  • Gao Shanga;Jun Chen
    • Computers and Concrete
    • /
    • 제32권5호
    • /
    • pp.475-486
    • /
    • 2023
  • Nondestructive evaluation (NDE) is an important task of civil engineering structure monitoring and inspection, but minor damage such as small cracks in local structure is difficult to observe. If cracks continued expansion may cause partial or even overall damage to the structure. Therefore, monitoring and detecting the structure in the early stage of crack propagation is important. The crack detection technology based on machine vision has been widely studied, but there are still some problems such as bad recognition effect for small cracks. In this paper, we proposed a deep learning method based on sweep signals to evaluate concrete surface crack with a width less than 1 mm. Two convolutional neural networks (CNNs) are used to analyze the one-dimensional (1D) frequency sweep signal and the two-dimensional (2D) time-frequency image, respectively, and the probability value of average damage (ADPV) is proposed to evaluate the minor damage of structural. Finally, we use the standard deviation of energy ratio change (ERVSD) and infrared thermography (IRT) to compare with ADPV to verify the effectiveness of the method proposed in this paper. The experiment results show that the method proposed in this paper can effectively predict whether the concrete surface is damaged and the severity of damage.

모터 베어링의 트레판 형상 수정에 관한 연구 (TREPAN SHAPE MODIFICATION OF MOTOR BEARING)

  • 이경원;반재삼;강형선;조규종
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.950-953
    • /
    • 2002
  • Trepan prevents wear of an inside part of a bearing when the initial shaft rotates. It continuously contacts with the eccentric part of the shaft in rotation and is loaded repeatedly. Therefore, even if an early crack of a trepan part is small, a crack progresses by a repeated load. If a crack progresses, very small chips come out. This is pill in the rotor and prevents rotation of the compressor. There can be leaks in a microgroove and extreme wear can occur due to lack of oil on the surface contact pan. Therefore, this study was carried out to compare and investigate trepan strength and deflection characteristics between trepan locations and dimension changes using a finite element method and search a motor bearing for a model with bigger stiffness of a trepan part and the same deflection. And then. five different types of the oil groove model were chosen to prevent small crack and considered also machining ability and the analysis was carried out on oil feeding flow.

  • PDF