• Title/Summary/Keyword: Small scale system

Search Result 1,720, Processing Time 0.036 seconds

Development of Optical Probe to Inspect Micron Scale Part in Micro-Factory (Micro-Factory 공정간 마이크로 부품 검사 프로브 개발)

  • Kim Geehong;Lee D.W.
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.424-428
    • /
    • 2005
  • This paper shows a non-contact optical method to inspect micron scale parts which will be manufactured in micro-factory system. This inspection system should have some characteristics like a small size, flexibility, and high measuring speed. In the viewpoint of measuring capabilities, it also has resolution under micron scale with measuring range over millimeter scale. Two methods will be presented in this paper, one is Moire and the other is white-light scanning interferometry. Also some experimental results will be presented to show the possibilities of the proposed inspection system.

  • PDF

Development of a Wave Absorbing System Using a Liquefied Sandbed

  • Kang, Yoon-Koo;Takahashi, Shigeo
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.4 s.71
    • /
    • pp.9-16
    • /
    • 2006
  • A new wave-absorbing system, called the liquefied sandbed wave barrier (LSWB) system, is currently under development at the Port and Airport Research Institute (PARI) of Japan. The wave damping effect by the LSWB system is substantial, as confirmed by small-scale experiments and FEM numerical calculations, i.e., the wave transmission coefficient of the system is less than 0.2. Here, the results of large-scale experiments arediscussed in view of practical application. Although the LSWB system provides high wave damping, nearly equal to theoretical values, difficulty exists in obtaining a homogeneously liquefied sandbed, due to the occurrence of liquefied sandbed compaction by cyclic wave loading, which in turn, reduces excess pare pressure and the wave damping effect. These two phenomena primarily occur when the sandbed is composed of fine sand with small permeability. Based on experimental results, we propose a design method that includes countermeasures against such problems, and a prototype LSWB system is constructed in a very large wave flume at PARI. Wave damping by the prototype LSWB system is confirmed to be quite stable and high, as predicted by theoretical calculations.

Policy measures and necessities for small scale organic farming in the EU

  • Cho, Y.;Nicholas, P.
    • Korean Journal of Organic Agriculture
    • /
    • v.19 no.spc
    • /
    • pp.115-118
    • /
    • 2011
  • Most of European countries have certain support measures of small holder organic producers in their policy system but they need to be more positive with this issue. Recent EU regulations and any other governmental organic farming measures are hardly emphasising on small holders' issues except a few measures. In order to secure small producer organic farming, the extensive efforts are needed. Developing new logos and differential support system for small producer organic at every aspects from production, marketing and public procurement level will become more positive actions to take, for example.

A Method to Accelerate Convergence of Hessenberg process for Small Signal Stability Analysis of Large Scale Power Systems (대규모 전력계통의 미소신호 안정도 해석을 위한 Hessenberg Process의 수렴특성 가속화 방법)

  • Song, Sung-Geun;Nam, Ha-Kon;Shim, Kwan-Shik;Moon, Chae-Ju;Kim, Yong-Gu
    • Proceedings of the KIEE Conference
    • /
    • 1998.07c
    • /
    • pp.871-874
    • /
    • 1998
  • It is most important in small signal stability analysis of large scale power systems to compute only the dominant eigenvalues selectively with numerical stability and efficiency. Hessenberg process is numerically very stable and identifies the largest eigenvalues in magnitude. Hence, transformed system matrix must be used with the process. Inverse transformation with complex shift provides high selectivity centered on the shift, but does not possess the desired property of computing the dominant mode first. Thus, advantage of high selectivity of the transformation can be fully utilized only when the complex shift is given close to the dominant eigenvalues. In this paper, complex shift is determined by Fourier transforming the results of dynamic simulation with PTI's PSS/E transient simulation program. The convergence in Hessenberg process is accelerated using the iterative scheme. Overall, a numerically stable and very efficient small signal stability program is obtained. The stability and efficiency of the program has been validated against New England 10-machines 39-bus system and KEPCO system.

  • PDF

Profiling of Workers based on Safety Accident Big Data in Construction Site (건설현장 안전사고 빅 데이터 기반 작업자별 프로파일 분석)

  • Kang, Sung Won;Lee, Ki Seok;Yoo, Wi Sung;Shin, Yoon-Seok
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.247-248
    • /
    • 2021
  • Recently, the government is pursuing to reduce the serious accidents in most industries, including the construction industry, by enacting laws on punishment. The accident rate tends to be depended on the size and type of construction sites, and the accidents occur frequently due to inadequate implementation of safety management system and management standards, especially, in small and medium-sized sites. This study has performed the profiling of 265,000 accident cases on construction sites by attribute analysis such as the ratio of days lost to work, and pattern of days lost to work compared to the size of the construction. It turned out that the proportion of accident cases was high mainly in small-scale construction sites, and long-term labor losses occurred. Shortly, it is necessary to establish an institutional standard for applying a realistic safety management cost calculation and management system centered on small-scale sites. Therefore, this study is expected to be used as fundamental data or guideline for developing a customized safety management and accident prevention system for a worker reflecting the conditions of a construction site in the future.

  • PDF

Development of a one-dimensional system code for the analysis of downward air-water two-phase flow in large vertical pipes

  • Donkoan Hwang;Soon Ho Kang;Nakjun Choi;HangJin Jo
    • Nuclear Engineering and Technology
    • /
    • v.56 no.1
    • /
    • pp.19-33
    • /
    • 2024
  • In nuclear thermal-hydraulic system codes, most correlations used for vertical pipes, under downward two-phase flow, have been developed considering small pipes or pool systems. This suggests that there could be uncertainties in applying the correlations to accident scenarios involving large vertical pipes owing to the difference in the characteristics of two-phase flows, or flow conditions, between large and small pipes. In this study, we modified the Multi-dimensional Analysis of Reactor Safety KINS Standard (MARS-KS) code using correlations, such as the drift-flux model and two-phase multiplier, developed in a plant-scale air-inflow experiment conducted for a pipe of diameter 600 mm under downward two-phase flow. The results were then analyzed and compared with those based on previous correlations developed for small pipes and pool conditions. The modified code indicated a good estimation performance in two plant-scale experiments with large pipes. For the siphon-breaking experiment, the maximum errors in water flow for modified and original codes were 2.2% and 30.3%, respectively. For the air-inflow accident experiment, the original code could not predict the trend of frictional pressure gradient in two-phase flow as / increased, while the modified MARS-KS code showed a good estimation performance of the gradient with maximum error of 3.5%.

Development of a SLAM System for Small UAVs in Indoor Environments using Gaussian Processes (가우시안 프로세스를 이용한 실내 환경에서 소형무인기에 적합한 SLAM 시스템 개발)

  • Jeon, Young-San;Choi, Jongeun;Lee, Jeong Oog
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.11
    • /
    • pp.1098-1102
    • /
    • 2014
  • Localization of aerial vehicles and map building of flight environments are key technologies for the autonomous flight of small UAVs. In outdoor environments, an unmanned aircraft can easily use a GPS (Global Positioning System) for its localization with acceptable accuracy. However, as the GPS is not available for use in indoor environments, the development of a SLAM (Simultaneous Localization and Mapping) system that is suitable for small UAVs is therefore needed. In this paper, we suggest a vision-based SLAM system that uses vision sensors and an AHRS (Attitude Heading Reference System) sensor. Feature points in images captured from the vision sensor are obtained by using GPU (Graphics Process Unit) based SIFT (Scale-invariant Feature Transform) algorithm. Those feature points are then combined with attitude information obtained from the AHRS to estimate the position of the small UAV. Based on the location information and color distribution, a Gaussian process model is generated, which could be a map. The experimental results show that the position of a small unmanned aircraft is estimated properly and the map of the environment is constructed by using the proposed method. Finally, the reliability of the proposed method is verified by comparing the difference between the estimated values and the actual values.

A Design and Implementation of Web-based Traffic Monitoring System for Management of Small-scale PC-room (소규모 실습실 관리를 위한 웹기반 트래픽 모니터링 시스템의 설계 및 구현)

  • Lee Kang-ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.9 no.4 s.32
    • /
    • pp.127-131
    • /
    • 2004
  • In this paper, I propose the web-based network traffic monitoring system to monitor computers running MS Windows in the small-scale PC-room. The system can support network and system operation, management, expansion, and design using network analysis and diagnosis to a network administrator. The whole system consists of two parts: analysis server for collection and analysis of the network information. and supports real-time monitoring of network traffic, and the web-based interface system. a client system shows user a graphical data that analyzed a returned result from the server. This system implements web-based technology using java and contributes to enhance the effectiveness of network administrator's management activities in PC-room by controlling and monitoring.

  • PDF

A Study on Propulsion Control Device Characteristics of Small-scale Electric Railway Vehicle according to Driving Curve Tracking using Fuel Cell Generation System (연료전지 발전시스템을 이용한 축소형 철도차량의 운전곡선 추종에 따른 추진제어장치 특성 고찰)

  • Jung, No-Geon;Chang, Sang-Hoon;Kim, Jae-Moon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.12
    • /
    • pp.1804-1809
    • /
    • 2015
  • The study in railway system to apply a fuel cell system with high efficiency and mobility than other renewable energy is being actively conducted. It is needed a analysis on load characteristics and control method of rolling stock in order to apply to rolling stock. This paper presents study on control small-scale prototype power converter electric railway vehicle using fuel cell generation system. Experiment is conducted through real fuel cell generation system and reference speed applying the driving curve of the actual electric railway vehicle was applied. Also, output voltage of boost converter is controlled considering characteristic of fuel cell. And it was confirmed characteristic according to powering and regeneration of inverter.

Development of Embedded System Based Cortex-M for Smart Manufacturing (스마트 제조를 위한 Cortex-M 기반 임베디드 시스템 개발)

  • Cho, Choon-Nam
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.4
    • /
    • pp.326-330
    • /
    • 2020
  • Small-scale production control systems for smart manufacturing are becoming increasingly necessary as the manufacturing industry seeks to maximize manufacturing efficiency as the demand for customized product production increases. Correspondingly, the development of an embedded system to realize this capability is becoming important. In this study, we developed an embedded system based on an open source system that is cheaper than a widely applied programmable logic controller (PLC)-based production control system that is easier to install, configure, and process than a conventional relay control panel. This embedded system is system is based on a low-power, high-performance Cortex M4 processor and can be applied to smart manufacturing. It is designed to improve the development environment and compatibility of existing PLCs, control small-scale production systems, and enable data collection through heterogeneous communication. The real-time response characteristics were confirmed through an operation test for input/output control and data collection, and it was confirmed that they can be used in industrial sites.