• Title/Summary/Keyword: Small pump

Search Result 466, Processing Time 0.067 seconds

Development of low-cost, low-depth unit-type ground heat exchanger (저심도 저비용 유닛형 지중열교환기의 개발)

  • Oh, Jin-Hwan;Nam, Yujin;Chae, Ho-Byung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.05a
    • /
    • pp.166-167
    • /
    • 2014
  • Recently, in according to increase cognizance of energy and resources exhaustion, renewable energy system is received attention. In particular, ground heat pump system(GSHP) utilizing annually stable ground temperature for energy saving have been attracted in many buildings. However, GSHP system have disadvantage due to increase of initial installation and boring cost. In this study, in order to reduce the initial cost and to supply ground heat pump system into small scale house, an unit-type ground heat exchanger was developed.

  • PDF

Flowrate characteristics and application of screw pump (스크류펌프의 유량특성과 적용)

  • Lim, Jong-Soon
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.614-625
    • /
    • 2004
  • The main purpose of this study is to get flowrate coefficient 'q' and to study characteristics of flowrate of screw pump. This study is based on Muskin's formula and depends on the computer simulation. The results of study are as follows. 1. Flowrate coefficient will reduce according to increase of inclination. The larger the pitch ratio is and the smaller the diameter ratio is, the more coefficient reduces. 2. As a rule, the coefficient increases according to reduction of the diameter ratio, but the coefficient tends to reduce when the ratio is less than 0.45. So, in actual application, it is recommended that the ratio should be above 0.45. 3. If the pitch ratio increases, the coefficient increases in case of small inclination and decreases in case of large inclination. 4. The coefficient increases according to number of windings. Especially, singles winding is not used in actual application because it has too small coefficient. 5. The coefficient decreases when the influent water level falls. Flowrate is almost zero when the water level is below $40\%$ of Filling Points.

  • PDF

지하수위를 고려한 양수량 추정

  • 박승기;이승기;정재훈;강성민
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.09a
    • /
    • pp.13-16
    • /
    • 2002
  • The analysis of characteristics of pumping in the small tube well for agriculture were surveyed. Study area was located at the Galsinri in Yesangun near the yedang reservoir. Agricultural electricity using rates for pumping, ground water level and volume of pumping was monitored every week. Pump working ratio and pump efficiency during period of transplanting of rice showed 48.9%, 62.7% respectively.

  • PDF

Analysis for Design of a High Vacuum Turbomolecular Pump (고진공 터보분자 펌프의 설계 및 해석기술)

  • 이우영;국정한;박종권;구본학
    • Journal of the Semiconductor & Display Technology
    • /
    • v.1 no.1
    • /
    • pp.41-45
    • /
    • 2002
  • In modem manufacturing, new applations and technologies demand smaller, and functional devices to replace large systems. As miniaturization becomes a necessity, many companies are interested in small pumps for use in creating ultra-high vacuum, but past efforts to develop such systems have failed due to problems with vibration, stress, heat and power consumption. This paper shows analysis-based design techniques for high vacuum turbomolecular pump by finite element analysis.

  • PDF

Study on the Single-Phase Heat Transfer and Pressure Drop Characteristics of R-718 in Small Diameter Tubes (세관 내 R-718의 단상 열전달 및 압력강하 특성에 관한 연구)

  • 박기원;권옥배;홍진우;손창효;오후규
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.3
    • /
    • pp.522-530
    • /
    • 2004
  • Single-phase heat transfer coefficients and pressure drops of R-718 were measured in smooth, horizontal copper tubes with inner diameters of 3.36 ㎜, 5.35 ㎜. 6.54 ㎜ and 8.12 ㎜, respectively. The experiments were conducted in the closed loop, which was driven by a magnetic gear pump. Data are presented for the following range of variables : Reynolds from 1000 to 20000. Single-phase heat transfer coefficients increased by 10∼30 % as the inner diameter of tube was reduced and it was found that a well-known previous correlation, Gnielinski's correlation was not suitable for the small diameter tubes. But the pressure drop in the small diameter tubes have been shown slightly deviations with Blauius' correlation. Based on an analogy between heat and mass transfer. the new heat transfer correlation is proposed to predict the experimental data successfully.

The Performance Analysis for Low-Depth Unit-type Ground Heat Exchanger According to Grouting Materials (저심도 지중열교환기 개발을 위한 그라우트 재료에 따른 채열성능 검토 연구)

  • Oh, Jin-Hwan;Nam, Yujin
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.11 no.2
    • /
    • pp.7-11
    • /
    • 2015
  • Recently, as the demand for sustainable energy sources is increasing, ground-source heat pump (GSHP) systems are receiving growing attention. However, the initial cost of GSHP system is higher than it of the conventional systems, especially, in small-size buildings. Therefore, for the application to the small-size building, it is necessary to develop small-size ground heat exchanger with small-size buildings. In this study, analysis of unit-type heat exchanger due to grouting materials. As a result, 1492.14 W of heat exchange rate was acquired in the condition of cement-silica sand-graphite materials.

Development of a Korean Type Totally Implantable TAH (한국형 완전이식 인공심장의 개발)

  • Min, B.G.;Choi, W.W.;Ahn, J.M.;Park, S.K.;Park, C.Y.;Chang, J.K.;Kim, J.W.;Kim, H.C.;Kim, W.K.;Roh, R.J.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1996 no.05
    • /
    • pp.199-202
    • /
    • 1996
  • Artificial hearts are intended for use in patients with severe forms of heart disease for which no surgical repair is possible. The moving-actuator pump was developed to decrease the overall volume size of the electromechanical total artificial heart (TAH) by eliminating the occupied space of the fixed-actuator in the conventional pusher-plate type pump. In our pump, the actuator moves back and forth for alternative ejections of left and right ventricles. The problem of fitting the TAH to atrial remnants and arterial vessels could also be improved by circular or penduluous mot ion of the actuator instead of linear mot ion of the pusher-plate in the conventional pumps. We have evaluated two types of moving- actuator pump; one is a rolling cylinder type, and the other a pendulum type pump. In the rolling cylinder pump, frictional energy loss exists between the pump housing's guide bars and the actuator's end caps, while the bottom rack under the cylindrical actuator increases the height of the pump, the pump is therefor not implantable inside the small chest of human-sized animals with a body weight of less than 70kg. The new human type pump has a penduluous mot ion actuator to correct the above problems while maintaining the advantage of the moving- actuator's small total volume. The totally implantable TAH is composed of a blood pump, a control system and pheriperal equipments. The blood pump, which is constructed by a moving actuator, a right and left blood sac, and four artificial valves, is implanted in the thoracic. In 1988, the first implantation of the rolling cylinder TAH was performed into a female calf weighing 100kg, and the cal f recovered to the degree of voluntary standing and eat ing and survived to 100 hrs. We then survived two female sheep weighing about 63kg with the new human type TAH for three days.

  • PDF

로켓엔진용 연료펌프의 성능 시험

  • Kim, Dae-Jin;Hong, Soon-Sam;Choi, Chang-Ho;Kim, Jin-Han
    • Aerospace Engineering and Technology
    • /
    • v.4 no.1
    • /
    • pp.143-149
    • /
    • 2005
  • To evaluate the hydraulic and cavitation performance of a fuel pump for a liquid rocket engine, performance tests of the pump, which consist of hydraulic tests and cavitation tests, were conducted in water environment with various condition. In the hydraulic tests, the head, efficiency and volute pressure distribution of the pump are found to follow the conventional similarity rule, whereas the secondary flow pressure shows a small deviation from the similarity rule. As the floating gap is constricted, the efficiency of the pump improves and the secondary flow pressure decreases. However, the inner diameter of bypass line orifice does not show clear relationship with the pump efficiency. In the cavitation tests, measurements of the head and the NPSH indicate that the pump shows better cavitation performance as the rotational speed of the pump increases.

  • PDF

Evaluation of the Annual Performance of the Direct Expansion Vertical Closed-Loop Ground Source Heat Pump (직접순환식 수직밀폐형 지열원 열펌프의 연간 운전성능 평가)

  • Kim, Min-Sung;Woo, Joung-Son;Baik, Young-Jin;Jang, Jea-Chul;Kim, Ji-Young;Ra, Ho-Sang
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.534-542
    • /
    • 2012
  • Vertical closed-loop ground source heat pump systems(GSHP) have been installed widely in Korea since it can extract moderate temperature level of geothermal heat in a small area. As a ground heat exchanger, a vertical closed-loop type with brine circulation is mostly preferred since it is simple and less harmful to ground environment. However, it requires a secondary heat exchange loop between the refrigerant in a heat pump and the brine. By adding a geothermal heat exchanger in the secondary heat exchange loop, circulation pumps should be attached and the temperature difference between refrigerant and ground is increased, which are important parts of performance degradation. In this paper, annual and seasonal performances of direct expansion(DX) geothermal heat pump were estimated mathematically as an alternative of classical indirect geothermal heat pump based on the annual performance evaluation. As a result, DX geothermal heat pump showed 43% higher annual performance than the classical U-tube geothermal heat pump.

  • PDF