• Title/Summary/Keyword: Small modular reactors (SMRs)

Search Result 20, Processing Time 0.025 seconds

OECD/NEA STUDY ON THE ECONOMICS AND MARKET OF SMALL REACTORS

  • Lokhov, Alexey;Cameron, Ron;Sozoniuk, Vladislav
    • Nuclear Engineering and Technology
    • /
    • v.45 no.6
    • /
    • pp.701-706
    • /
    • 2013
  • According to the OECD/NEA estimates, nuclear power plants (NPPs), whether with a large reactor or with small modular reactors (SMRs), are competitive with many other electricity generation technologies in a significant number of cases, one of the exceptions being natural gas in the USA with the current level of prices. However, SMRs have particular features and requirements setting conditions for their deployment. This paper presents the preliminary analysis by OECD/NEA of the economics, opportunities, and market for small nuclear reactors.

Techno-economic assessment of a very small modular reactor (vSMR): A case study for the LINE city in Saudi Arabia

  • Salah Ud-Din Khan;Rawaiz Khan
    • Nuclear Engineering and Technology
    • /
    • v.55 no.4
    • /
    • pp.1244-1249
    • /
    • 2023
  • Recently, the Kingdom of Saudi Arabia (KSA) announced the development of first-of-a-kind(FOAK) and most advanced futuristic vertical city and named as 'The LINE'. The project will have zero carbon dioxide emissions and will be powered by clean energy sources. Therefore, a study was designed to understand which clean energy sources might be a better choice. Because of its nearly carbon-free footprint, nuclear energy may be a good choice. Nowadays, the development of very small modular reactors (vSMRs) is gaining attention due to many salient features such as cost efficiency and zero carbon emissions. These reactors are one step down to actual small modular reactors (SMRs) in terms of power and size. SMRs typically have a power range of 20 MWe to 300 MWe, while vSMRs have a power range of 1-20 MWe. Therefore, a study was conducted to discuss different vSMRs in terms of design, technology types, safety features, capabilities, potential, and economics. After conducting the comparative test and analysis, the fuel cycle modeling of optimal and suitable reactor was calculated. Furthermore, the levelized unit cost of electricity for each reactor was compared to determine the most suitable vSMR, which is then compared other generation SMRs to evaluate the cost variations per MWe in terms of size and operation. The main objective of the research was to identify the most cost effective and simple vSMR that can be easily installed and deployed.

The great SMR race (SMR 동향 - 소형 모듈 원전 (SMRs) 시장 선점을 위한 치열한 경쟁 현황)

  • 한국원자력산업회의
    • Nuclear industry
    • /
    • v.33 no.5
    • /
    • pp.92-97
    • /
    • 2013
  • 소형 모듈 원전 (SMRs, Small Modular Reactors) 시장 선점을 위한 각국의 경쟁이 치열하게 전개되고 있다. 그 중에서도 특히 미국, 러시아, 중국, 한국, 아르헨티나를 포함한 15개 국가가 향후 20년에 걸쳐 펼쳐질 소형 모듈 원전 시장 선점 경쟁에서 치열한 각축전을 벌일 것으로 예상되고 있다.

  • PDF

Assessing the nuclear weapons proliferation risks in nuclear energy newcomer countries: The case of small modular reactors

  • Philseo Kim;Sunil S. Chirayath
    • Nuclear Engineering and Technology
    • /
    • v.56 no.8
    • /
    • pp.3155-3166
    • /
    • 2024
  • While several nuclear energy newcomer (NEN) countries have shown interest in small modular reactors (SMRs) as a potential energy source, this interest can generate new uncertainties regarding future nuclear weapons proliferation risks. Therefore, this research seeks to determine whether future SMR deployment in NEN countries will contribute to nuclear weapons proliferation, and how the risks can be mitigated. This research uses the Bayesian network statistical approach in conjunction with surveys of experts to assess nuclear proliferation risks when NEN countries deploy SMRs or a large commercial nuclear reactor. The results indicate that an NEN with a strong commitment to the nuclear non-proliferation norms and a stable security environment will experience a lower probability of having higher proliferation risks relative to the United Arab Emirates. Specifically, we demonstrate that experts anticipate a minimal escalation in proliferation risks across different SMR types. Instead, the results show that enrichment or reprocessing (E&R) facilities, if associated with an SMR, exert a substantial influence on proliferation risks. Lastly, implementing a spent nuclear fuel (SNF) retrieval system could serve as an option to mitigate proliferation risks in an NEN country. These findings offer insights for leading nuclear supplier countries to alleviate the potential proliferation risks by NEN countries.

Code development on steady-state thermal-hydraulic for small modular natural circulation lead-based fast reactor

  • Zhao, Pengcheng;Liu, Zijing;Yu, Tao;Xie, Jinsen;Chen, Zhenping;Shen, Chong
    • Nuclear Engineering and Technology
    • /
    • v.52 no.12
    • /
    • pp.2789-2802
    • /
    • 2020
  • Small Modular Reactors (SMRs) are attracting wide attention due to their outstanding performance, extensive studies have been carried out for lead-based fast reactors (LFRs) that cooled with Lead or Lead-bismuth (LBE), and small modular natural circulation LFR is one of the promising candidates for SMRs and LFRs development. One of the challenges for the design small modular natural circulation LFR is to master the natural circulation thermal-hydraulic performance in the reactor primary circuit, while the natural circulation characteristics is a coupled thermal-hydraulic problem of the core thermal power, the primary loop layout and the operating state of secondary cooling system etc. Thus, accurate predicting the natural circulation LFRs thermal-hydraulic features are highly required for conducting reactor operating condition evaluate and Thermal hydraulic design optimization. In this study, a thermal-hydraulic analysis code is developed for small modular natural circulation LFRs, which is based on several mathematical models for natural circulation originally. A small modular natural circulation LBE cooled fast reactor named URANUS developed by Korea is chosen to assess the code's capability. Comparisons are performed to demonstrate the accuracy of the code by the calculation results of MARS, and the key thermal-hydraulic parameters agree fairly well with the MARS ones. As a typical application case, steady-state analyses were conducted to have an assessment of thermal-hydraulic behavior under nominal condition, and several parameters affecting natural circulation were evaluated. What's more, two characteristics parameters that used to analyze natural circulation LFRs natural circulation capacity were established. The analyses show that the core thermal power, thermal center difference and flow resistance is the main factors affecting the reactor natural circulation. Improving the core thermal power, increasing the thermal center difference and decreasing the flow resistance can significantly increase the reactor mass flow rate. Characteristics parameters can be used to quickly evaluate the natural circulation capacity of natural circulation LFR under normal operating conditions.

The TANDEM Euratom project: Context, objectives and workplan

  • C. Vaglio-Gaudard;M.T. Dominguez Bautista;M. Frignani;M. Futterer;A. Goicea;E. Hanus;T. Hollands;C. Lombardo;S. Lorenzi;J. Miss;G. Pavel;A. Pucciarelli;M. Ricotti;A. Ruby;C. Schneidesch;S. Sholomitsky;G. Simonini;V. Tulkki;K. Varri;L. Zezula;N. Wessberg
    • Nuclear Engineering and Technology
    • /
    • v.56 no.3
    • /
    • pp.993-1001
    • /
    • 2024
  • The TANDEM project is a European initiative funded under the EURATOM program. The project started on September 2022 and has a duration of 36 months. TANDEM stands for Small Modular ReacTor for a European sAfe aNd Decarbonized Energy Mix. Small Modular Reactors (SMRs) can be hybridized with other energy sources, storage systems and energy conversion applications to provide electricity, heat and hydrogen. Hybrid energy systems have the potential to strongly contribute to the energy decarbonization targeting carbon-neutrality in Europe by 2050. However, the integration of nuclear reactors, particularly SMRs, in hybrid energy systems, is a new R&D topic to be investigated. In this context, the TANDEM project aims to develop assessments and tools to facilitate the safe and efficient integration of SMRs into low-carbon hybrid energy systems. An open-source "TANDEM" model library of hybrid system components will be developed in Modelica language which, by coupling, will extend the capabilities of existing tools implemented in the project. The project proposes to specifically address the safety issues of SMRs related to their integration into hybrid energy systems, involving specific interactions between SMRs and the rest of the hybrid systems; new initiating events may have to be considered in the safety approach. TANDEM will study two hybrid systems covering the main trends of the European energy policy and market evolution at 2035's horizon: a district heating network and power supply in a large urban area, and an energy hub serving energy conversion systems, including hydrogen production; the energy hub is inspired from a harbor-like infrastructure. TANDEM will provide assessments on SMR safety, hybrid system operationality and techno-economics. Societal considerations will also be encased by analyzing European citizen engagement in SMR technology safety.

Strategic analysis on sizing of flooding valve for successful accident management of small modular reactor

  • Hyo Jun An;Jae Hyung Park;Chang Hyun Song;Jeong Ik Lee;Yonghee Kim;Sung Joong Kim
    • Nuclear Engineering and Technology
    • /
    • v.56 no.3
    • /
    • pp.949-958
    • /
    • 2024
  • In contrast to all-time flooded small modular reactor (SMR) systems, an in-kind flooding safety system (FSS) has been proposed as a passive safety system applicable to small modular reactors (SMRs) that adopt a metal containment vessel (MCV). Under transient conditions, the FSS can provide emergency cooling to dry reactor cavities and sustain long-term coolability using re-acquired evaporated steam in the reactor building on demand. When designing an FSS, the effect of the flooding flow area is vital as it affects the overall accident sequence and safety. Therefore, in this study, a MELCOR model of a reference SMR is developed and numerical analysis is performed under postulated accident scenarios. Without flooding, the MCV pressure of the reactor module exceeds the design pressure before core damage. To prevent core damage, an emergency flooding strategy is devised using various flow path parameters and requirements to ensure an adequate emergency coolant supply before the core damage is investigated. The results indicate that a flow area exceeding 0.02 m2 is required in the FSS to prevent MCV overpressure and core damage. This study is the first to report a strategic analysis for appropriately sizing an FSS flooding valve applicable to innovative SMRs.

Development of a Functional Complexity Reduction Concept of MMIS for Innovative SMRs

  • Gyan, Philip Kweku;Jung, Jae Cheon
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.17 no.2
    • /
    • pp.69-81
    • /
    • 2021
  • The human performance issues and increased automation issues in advanced Small Modular Reactors (SMRs) are critical to numerous stakeholders in the nuclear industry, due to the undesirable implications targeting the Man Machine Interface Systems (MMIS) complexity of (Generation IV) SMRs. It is imperative that the design of future SMRs must address these problems. Nowadays, Multi Agent Systems (MAS) are used in the industrial sector to solve multiple complex problems; therefore incorporating this technology in the proposed innovative SMR (I-SMR) design will contribute greatly in the decision making process during plant operations, also reduce the number MCR operating crew and human errors. However, it is speculated that an increased level of complexity will be introduced. Prior to achieving the objectives of this research, the tools used to analyze the system for complexity reduction, are the McCabe's Cyclomatic complexity metric and the Henry-Kafura Information Flow metric. In this research, the systems engineering approach is used to guide the engineering process of complexity reduction concept of the system in its entirety.

Neutronic optimization of thorium-based fuel configurations for minimizing slightly used nuclear fuel and radiotoxicity in small modular reactors

  • Nur Anis Zulaikha Kamarudin;Aznan Fazli Ismail;Mohamad Hairie Rabir;Khoo Kok Siong
    • Nuclear Engineering and Technology
    • /
    • v.56 no.7
    • /
    • pp.2641-2649
    • /
    • 2024
  • Effective management of slightly used nuclear fuel (SUNF) is crucial for both technical and public acceptance reasons. SUNF management, radiotoxicity risk, and associated financial investment and technological capabilities are major concerns in nuclear power production. Reducing the volume of SUNF can simplify its management, and one possible solution is utilizing small modular reactors (SMR) and advanced fuel designs like those with thorium. This research focuses on studying the neutronic performance and radionuclide inventory of three different thorium fuel configurations. The mass of fissile material in thorium-based fuel significantly impacts Kinf, burn-up, and neutron energy spectrum. Compared to uranium, thorium as a fuel produces far fewer transuranic elements and less long-lived fission products (LLFPs) at the end of the core cycle (EOC). However, certain fission product elements produced from thorium-based fuel exhibit higher radioactivity at the beginning of the core cycle (BOC). Physical separation of thorium and uranium in the fuel block, like seed-and-blanket units (SBU) and duplex fuel designs, generate less radioactive waste with lower radioactivity and longer cycle lengths than homogeneous or mixed thorium-uranium fuel. Furthermore, the SBU and duplex feel designs exhibit comparable neutron spectra, leading to negligible differences in SUNF production between the two.

Thermal-hydraulic modeling of CAREM-25 advanced small modular reactor using the porous media approach and COBRA-EN modified code

  • Saeed Zare Ganjaroodi;Maryam Fani;Ehsan Zarifi;Salaheddine Bentridi
    • Nuclear Engineering and Technology
    • /
    • v.56 no.5
    • /
    • pp.1574-1583
    • /
    • 2024
  • Small Modular Reactors (SMRs) are compact nuclear reactors designed to generate electric power up to 300 MWe. They could be assembled in factory, and then transported to be directly installed on-stie. CAREM (Central Argentina de Elementos Modulares) is a national SMR development project, based on light water reactor technology supervised by Argentina's National Atomic Energy Commission (CNEA). It is a natural circulation-based SMR with an indirect-cycle, including specific items and parts that simplify the design and improve safety performance. In this paper, the thermal-hydraulic study of CAREM-25 advanced small modular reactor is conducted by using COBRA-EN modified code and the Porous Media Approach (PMA) for the first time. According to PMA approach, each fuel assembly is modeled and divided into a network of lumped regions. While complex geometries are defined, the thermal-hydraulic parameters such as temperature and density are calculated for coolant and fuel rods. The obtained results show that the temperature in the fuel center may reach a peak around 1280 K in the hottest fuel assembly. Finally, the comparison of results from both methods (modified COBRA-EN and PMA) presented an appropriate consistency.