DOI QR코드

DOI QR Code

Thermal-hydraulic modeling of CAREM-25 advanced small modular reactor using the porous media approach and COBRA-EN modified code

  • Saeed Zare Ganjaroodi (Energy and Physics Department, Amirkabir University of Technology) ;
  • Maryam Fani (Energy and Physics Department, Amirkabir University of Technology) ;
  • Ehsan Zarifi (Reactor and Nuclear Safety Research School, Nuclear Science and Technology Research Institute) ;
  • Salaheddine Bentridi (Laboratory of Energy and Smart Systems, Faculty of Science and Technology, University of Khemis-Miliana)
  • Received : 2023.09.23
  • Accepted : 2023.12.02
  • Published : 2024.05.25

Abstract

Small Modular Reactors (SMRs) are compact nuclear reactors designed to generate electric power up to 300 MWe. They could be assembled in factory, and then transported to be directly installed on-stie. CAREM (Central Argentina de Elementos Modulares) is a national SMR development project, based on light water reactor technology supervised by Argentina's National Atomic Energy Commission (CNEA). It is a natural circulation-based SMR with an indirect-cycle, including specific items and parts that simplify the design and improve safety performance. In this paper, the thermal-hydraulic study of CAREM-25 advanced small modular reactor is conducted by using COBRA-EN modified code and the Porous Media Approach (PMA) for the first time. According to PMA approach, each fuel assembly is modeled and divided into a network of lumped regions. While complex geometries are defined, the thermal-hydraulic parameters such as temperature and density are calculated for coolant and fuel rods. The obtained results show that the temperature in the fuel center may reach a peak around 1280 K in the hottest fuel assembly. Finally, the comparison of results from both methods (modified COBRA-EN and PMA) presented an appropriate consistency.

Keywords

References

  1. International Atomic Energy Agency, Advances in Small Modular Reactor Technology Developments, A Supplement to, IAEA Advanced Reactors Information System (ARIS), Vienna, 2014. IAEA.
  2. International Atomic Energy Agency, Status of Innovative Small and Medium Sized Reactor Designs 2005 Reactors with Conventional Refueling Schemes. IAEATECDOC-1485, IAEA, Vienna, 2006.
  3. Advances in Small Modular Reactor Technology Developments, A Supplement to: IAEA Advanced Reactors Information System (ARIS), IAEA TECDOC, 2018.
  4. M. Ishida, et al., CAREM project development activities", in: International Seminar on Status and Prospects for Small and Medium Size Reactors, 2001. Cairo, Egypt.
  5. S. Gomez, Development Activities on Advanced LWR Designs in Argentina, Technical Committee Meeting on Performance of Operating and Advanced Light Water Reactor Designs, 2000. Munich, Germany.
  6. M. Ishida, Development of New Nuclear Power Plant in Argentina, Advisory Group Meeting on Optimizing Technology, Safety and Economics of Water-Cooled Reactors, 2000. Vienna, Austria.
  7. H. Boado Magan, D.F. Delmastro, M. Markiewicz, E. Lopasso, F. Diez, M. Gim_enez, A. Rauschert, S. Halpert, M. Chocr_on, J.C. Dezzutti, H. Pirani, C. Balbi, A. Fittipaldi, M. Schlamp, G.M. Murmis, H. Lis, CAREM Project Status, Science and Technology of Nuclear Installations, 2011.
  8. S. Tashakor, E. Zarifi, M. Naminazari, Neutronic simulation of CAREM-25 small modular reactor, Prog. Nucl. Energy 99 (2017) 185e195.
  9. D. Delmastro, R. Mazzi, A. Santecchia, V. Ishida, S. Gomez, S. Gomez de Soler, L. Ramilo, CAREM: an advanced integrated PWR', in: IAEA, Small and Medium Sized Reactors: Status and Prospects, IAEA-CSP-14/P, 2002, p. 224e231.
  10. R. Mazzi, A. Santecchia, V. Ishida, D. Delmastro, S. Gomez, S. Gomez de Soler, L. Ramilo, CAREM project development, in: IAEA, Small and Medium Sized Reactors: Status and Prospects, IAEA-CSP-14/P, 2002, p. 232e243.
  11. Edmundo miguel lopasso- colaborador, calculo de la exposicion de estructuras interiores y recipiente de presion del CAREM-25 mediante MCNP, 2009.
  12. CNEA & INVAP, CAREM-25-informe Consolidado, 2000.
  13. C.P. Marcel, H.F. Furci, D.F. Delmastro, V.P. Masson, Phenomenology involved in self- pressurized, natural circulation, low thermo-dynamic quality, nuclear reactors: the thermal-hydraulics of the CAREM-25 reactor, Nucl. Eng. Des. 254 (2013) 218-227, https://doi.org/10.1016/j.nucengdes.2012.09.005.
  14. C.P. Marcel, F.M. Acuna, P.G. Zanocco, D.F. Delmastro, Stability of self-pressurized, natural circulation, low thermo-dynamic quality, nuclear reactors: the stability performance of the CAREM-25 reactor, Nucl. Eng. Des. 265 (2013) 232-243, https://doi.org/10.1016/j.nucengdes.2013.08.057, 2013.
  15. S. Wang, X. Huang, Y. Rao, B.P. Bromley, Development and testing of a system thermal-hydraulics model for a 50-MWel-class pressurized water reactor -small modular reactor (PWR-SMR), ASME Journal of Nuclear Engineering and Radiation Science (2023), https://doi.org/10.1115/1.4063240. July, 2023.
  16. C. Li, K. Podila, Y. Rao, B.P. Bromley, Computational fluid dynamics modelling of a pressurized water reactor (PWR) fuel assembly to estimate loss coefficients in support of subchannel thermalhydraulics modelling of PWR small modular reactors with advanced fuels", ASME Journal of Nuclear Engineering and Radiation Science (2022), https://doi.org/10.1115/1.405494. July 2022.
  17. A. Mahmoud, A. Nava-Dominguez, B.P. Bromley, S. Kelly, Steady-state sub-channel thermalhydraulic assessment of a full-scale PWR-SMR fuel assembly with conventional and advanced fuels, ASME Journal of Nuclear Engineering and Radiation Science (2022), https://doi.org/10.1115/1.4053829. February, 2022.
  18. B.P. Bromley, Z. Cheng, A. Nava Dominguez, A.V. Colton, Sensitivity studies to assess the impact of geometry and operating/boundary condition perturbations on thermal-hydraulic behavior of advanced fuel channels in pressure tube heavy water reactors with uranium and thorium-based fuels, ANS Nuclear Technology Journal 207 (10) (2021) 1511-1537, https://doi.org/10.1080/00295450.2020.1827658. January 2021.
  19. A. Nava Dominguez, S. Liu, T. Beuthe, B.P. Bromley, A.V. Colton, Steady state sub channel thermal hydraulics assessment of advanced uranium and thorium based fuel bundle concepts for potential use in pressure tube heavy water reactors, ANS Nuclear Technology Journal 207 (8) (2020) 1216-1236, https://doi.org/10.1080/00295450.2020.1813463. December 2020.
  20. D. Basile, M. Beghi, R. Chierici, E. Salina, E. Brega, COBRA-EN, an Updated Version of the COBRA-3C/MIT Code for Thermal-Hydraulic Transient Analysis of Light Water Reactor Fuel Assemblies and Cores, 1999. Report no. 1010/1, Italy.
  21. E. Villarino, D. Hergenreder, S. Matzkin, Neutronic Core Performance of CAREM25 Reactor, INVAP, Argentina, 2012.
  22. Diego Ferraro, Calculo de exposicion de estructuras interiores recipinte de presion del CAREM-25 mediante MCNP, Instituto Balseiro Universidad Nacional de Cuyo Comision Nacional de Energia Atomica, San Carlod de Bariloche Argentina, 2009.
  23. S. Zare Ganjaroodi, A. Pazirandeh, Neutronic study of CAREM-25 advanced small modular reactor using Monte Carlo simulation, ATW 65 (2020). Issue 8/9 August/September.
  24. Braz Filho, A. Francisco, Alexandre D. Caldeira, Eduardo M. Borges, A problem in the COBRA-EN code related to the void fraction calculation, Ann. Nucl. Energy 32 (2005) 1782-1785.
  25. F. P Incropera, D. P Dewitt, Introduction to Heat and Mass Transfer, fifth ed., John Willy, 2002.
  26. M.M. El-Wakil, Nuclear Heat Transport, International textbook company, 1971.
  27. N.E. Todreas, M.S. Kazimi, Nuclear System I, Thermal Hydraulic Fundamentals, Taylor & Francis, USA, 1982.
  28. N.E. Todreas, M.S. Kazimi, Nuclear System I, Elements of Thermal HydraulicDesign, Taylor & Francis, USA, 1990.
  29. F.W. Dittus, L.M.K. Boelter, Univ. Calif. (Berkeley) Pub. Eng., vol. 2, 1930, p. 443.
  30. Ismail Tosun, Modeling in Transport Phenomena: A Conceptual Approach (Book) (Chapter 4: Evaluation of transfer coefficient: engineering correlations), second ed., 2007, https://doi.org/10.1016/B978-0-444-53021-9.X5000-3, 978-0-444-53021-9.
  31. Ephraim M. Sparrow, John Patrick Abraham, John M. Gorman, Advances in heat transfer, in: first ed.Chapter 2: Advanced Heat Transfer Topics in Complex Duct Flows), Academic Press, 2017, 9780128124116 https://doi.org/10.1016/bs.aiht.2017.09.001. November 11.
  32. J.P. Holman, Excel for Engineers, Hints and Examples, Crest press, Dallas, 1999.
  33. A.P. Colburn, A method of correlating forced convection heat transfer data and a comparison with fluid friction, Trans. AICHE 29 (1933) 174.
  34. R.H.S. Winterton, Where did the dittos and boelter equation come from? Int. J. Heat Mass Tran. 41 (1998) 809.
  35. V. Gnielinski, New equations for heat and mass transfer in turbulent pipe and channel flow, Int. Chem. Eng. 16 (1976) 359-365.
  36. G.W. Sutton, A. Sherman, Engineering Magnetohydrodynamics, McGraw- hill, New York, 1965.
  37. W.H. McAdams, Heat Transmission, 3d ed., McGraw-Hill, New York, 1954.
  38. E.A. Sziclas, An analysis of the compressible laminar boundary layer with foreign gas injection, United aircraft crop, Res. Dept. Rep. (1956). SR-0539-8.
  39. W.J. Minkowycz, E.M. Sparrow, Local nonsimilar solutions for natural convection on a vertical cylinder, J. Heat transfer 96 (1974) 178.
  40. F.J. Bayley, An analysis of turbulent free convection heat transfer, Proc. Inst. Mech. Eng. 169 (20) (1955) 361.
  41. C.Y. Warner, V.S. Arpaci, An experimental investigation of turbulent natural convection in air at low pressure along a vertical heated flat plate, Int. J. Heat Mass Tran. 11 (1968) 397.
  42. E.R.G. Eckert, T.W. Jackson, Analysis of turbulent free convection boundary layer on a flat plate, NACA Rep 1015 (1955).
  43. E.M. Sparrow, M.A. Ansari, A refutation of king's rule for multi-dimensional external natural convection, Int. J. Heat Mass Tran. 26 (1983) 1357.
  44. S.W. Churchil, H.H.S. Chu, Correlation equations for laminar and turbulent free convection from a vertical plate, Int. J. Heat Mass Tran. 18 (1975) 1323.
  45. IAEA TECHDOC-494, Thermophysical Properties of Materials for Water-Cooled Reactors, 1997.
  46. International Steam Tables Properties for Water and Steam Based on the Industrial Formulation, 2007. IAPWS-IF97.
  47. G. Ricciardi, S. Bellizzi, B. Collard, B. Cochelin, Modelling pressurized water reactor cores in terms of porous media, J. Fluid Struct. 25 (2008) 112-133.
  48. Zhen-zhong Li, Yu-dong Ding, Qiang Liao, Min Cheng, Xun Zhu, An approach based on the porous media model for numerical simulation of 3D finne d-tub es heat exchanger, Int. J. Heat Mass Tran. 173 (2021), 121226.
  49. Rohan Kansara, Markand Pathak, K. Vivek, Patel, Performance assessment of flat-plate solar collector with internal fins and porous media through an integrated approach of CFD and experimentation, Int. J. Therm. Sci. 165 (2021), 106932.
  50. Siyu Zou, Jie Xiao, Viola Wu, Xiao Dong Chen, Analyzing industrial CVD reactors using a porous media approach, Chem. Eng. J. 415 (2021), 129038.
  51. Danial Salehi, Gholamreza Jahanfarnia, Ehsan Zarifi, Thermal-hydraulic analysis of Al2O3 nanofluid as a coolant in Canadian supercritical water reactor by porous media approach, Nucl. Eng. Des. 368 (2020), 110825.