• Title/Summary/Keyword: Small modular reactor

Search Result 79, Processing Time 0.016 seconds

Possible power increase in a natural circulation Soluble-Boron-Free Small Modular Reactor using the Truly Optimized PWR lattice

  • Steven Wijaya;Xuan Ha Nguyen;Yonghee Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.1
    • /
    • pp.330-338
    • /
    • 2023
  • In this study, impacts of an enhanced-moderation Fuel Assembly (FA) named Truly Optimized PWR (TOP) lattice, which is modified based on the standard 17 × 17 PWR FA, are investigated in a natural circulation Soluble-Boron-Free (SBF) Small Modular Reactor (SMR). Two different TOP lattice designs are considered for the analysis; one is with 1.26 cm pin pitch and 0.38 cm fuel pellet radius, and the other is with 1.40 cm pin pitch and 0.41 cm fuel pellet radius. The NuScale core design is utilized as the base model and assumed to be successfully converted to an SBF core. The analysis is performed following the primary coolant circulation loop, and the reactor is modelled as a single channel for thermal-hydraulic analyses. It is assumed that the ratio of the core pressure drop to the total system pressure drop is around 0.3. The results showed that the reactor power could be increased by 2.5% and 9.8% utilizing 1.26/0.38 cm and 1.40/0.41 cm TOP designs, respectively, under the identical coolant inlet and outlet temperatures as the constraints.

Analysis of heat-loss mechanisms with various gases associated with the surface emissivity of a metal containment vessel in a water-cooled small modular reactor

  • Geon Hyeong Lee;Jae Hyung Park;Beomjin Jeong;Sung Joong Kim
    • Nuclear Engineering and Technology
    • /
    • v.56 no.8
    • /
    • pp.3043-3066
    • /
    • 2024
  • In various small modular reactor (SMR) designs currently under development, the conventional concrete containment building has been replaced by a metal containment vessel (MCV). In these systems, the gap between the MCV and the reactor pressure vessel is filled with gas or vacuumed weakly, effectively suppressing conduction and convection heat transfer. However, thermal radiation remains the major mode of heat transfer during normal operation. The objective of this study was to investigate the heat-transfer mechanisms in integral pressurized water reactor (IPWR)-type SMRs under various gas-filled conditions using computational fluid dynamics. The use of thermal radiation shielding (TRS) with a much lower emissivity material than the MCV surface was also evaluated. The results showed that thermal radiation was always the dominant contributor to heat loss (48-97%), while the conjugated effects of the gas candidates on natural convection and thermal radiation varied depending on their thermal and radiative properties, including absorption coefficient. The TRS showed an excellent insulation performance, with a reduction in the total heat loss of 56-70% under the relatively low temperatures of the IPWR system, except for carbon dioxide (13%). Consequently, TRS can be utilized to enhance the thermal efficiency of SMR designs by suppressing the heat loss through the MCV.

Design of digital nuclear power small reactor once-through steam generator control system

  • Qian, Hong;Zou, Mingyao
    • Nuclear Engineering and Technology
    • /
    • v.54 no.7
    • /
    • pp.2435-2443
    • /
    • 2022
  • The once-through steam generator used in the small modular reactor needs to consider the stability of the outlet steam pressure and steam superheat of the secondary circuit to achieve better operating efficiency. For this reason, this paper designs a controllable operation scheme for the steam pressure and superheat of the small reactor once-through steam generator. On this basis, designs a variable universe fuzzy controller, first, design the fuzzy control rules to make the controller adjust the PI controller parameters according to the change of the error; secondly, use the domain adjustment factor to further subdivide the input and output domain of the fuzzy controller according to the change of the error, to improve the system control performance. The simulation results show that the operation scheme proposed in this paper have better system performance than the original scheme of the small reactor system, and controller proposed in this paper have better control performance than traditional PI controller and fuzzy PI controller, what's more, the designed control system also showed better anti-disturbance performance in lifting experiment between 100% and 80% working conditions. Finally, the experimental platform formed by connecting the digital small reactor with Matlab/Simulink through OPC(OLE for Process Control) communication technology also verified the feasibility of the proposed scheme.

Hydraulic performance and flow resistance tests of various hydraulic parts for optimal design of a reactor coolant pump for a small modular reactor

  • Byeonggeon Bae;Jaeho Jung;Je Yong Yu
    • Nuclear Engineering and Technology
    • /
    • v.55 no.3
    • /
    • pp.1181-1190
    • /
    • 2023
  • Hydraulic performance and flow resistance tests were performed to confirm the main parameters of the hydraulic instrumentation that can affect the pump performance of the reactor coolant pump. The flow resistance test offers important experimental data, which are necessary to predict the behavior of the primary coolant when the circulation of the reactor coolant pump is stopped. Moreover, the shape of the hydraulic section of the pump, which was considered in the test, was prepared to compare the mixed-flow- and axial-flow-type models, the difference in the number of blades of the impeller and diffuser, the difference in the shape of the impeller blade and its thickness, and the effect of coating at the suction bell. Additionally, five models of the hydraulic part were manufactured for the experiments. In this study, the differences in performance owing to the design factors were confirmed through the experimental results.

An advanced core design for a soluble-boron-free small modular reactor ATOM with centrally-shielded burnable absorber

  • Nguyen, Xuan Ha;Kim, ChiHyung;Kim, Yonghee
    • Nuclear Engineering and Technology
    • /
    • v.51 no.2
    • /
    • pp.369-376
    • /
    • 2019
  • A complete solution for a soluble-boron-free (SBF) small modular reactor (SMR) is pursued with a new burnable absorber concept, namely centrally-shielded burnable absorber (CSBA). Neutronic flexibility of the CSBA design has been discussed with fuel assembly (FA) analyses. Major design parameters and goals of the SBF SMR are discussed in view of the reactor core design and three CSBA designs are introduced to achieve both a very low burnup reactivity swing (BRS) and minimal residual reactivity of the CSBA. It is demonstrated that the core achieves a long cycle length (~37 months) and high burnup (~30 GWd/tU), while the BRS is only about 1100 pcm and the radial power distribution is rather flat. This research also introduces a supplementary reactivity control mechanism using stainless steel as mechanical shim (MS) rod to obtain the criticality during normal operation. A further analysis is performed to investigate the local power peaking of the CSBA-loaded FA at MS-rodded condition. Moreover, a simple $B_4C$-based control rod arrangement is proposed to assure a sufficient shutdown margin even at the cold-zero-power condition. All calculations in this neutronic-thermal hydraulic coupled investigation of the 3D SBF SMR core are completed by a two-step Monte Carlo-diffusion hybrid methodology.

PILLAR: Integral test facility for LBE-cooled passive small modular reactor research and computational code benchmark

  • Shin, Yong-Hoon;Park, Jaeyeong;Hur, Jungho;Jeong, Seongjin;Hwang, Il Soon
    • Nuclear Engineering and Technology
    • /
    • v.53 no.11
    • /
    • pp.3580-3596
    • /
    • 2021
  • An integral test facility, PILLAR, was commissioned, aiming to provide valuable experimental results which can be referenced by system and component designers and used for the performance demonstration of liquid-metal-cooled, passive small modular reactors (SMRs) toward their licensing. The setup was conceptualized by a scaling analysis which allows the vertical arrangements to be conserved from its prototypic reactor, scaled uniformly in the radial direction achieving a flow area reduction of 1/200. Its final design includes several heater rods which simulate the reactor core, and a single heat exchanger representing the steam generators in the prototype. The system behaviors were characterized by its data acquisition system implementing various instruments. In this paper, we present not only a detailed description of the facility components, but also selected experimental results of both steady-state and transient cases. The obtained steady-state test results were utilized for the benchmark of a system code, achieving a capability of accurate simulations with ±3% of maximum deviations. It was followed by qualitative comparisons on the transient test results which indicate that the integral system behaviors in passive LBE-cooled systems are able to be predicted by the code.

Technology Selection for Offshore Underwater Small Modular Reactors

  • Shirvan, Koroush;Ballinger, Ronald;Buongiorno, Jacopo;Forsberg, Charles;Kazimi, Mujid;Todreas, Neil
    • Nuclear Engineering and Technology
    • /
    • v.48 no.6
    • /
    • pp.1303-1314
    • /
    • 2016
  • This work examines the most viable nuclear technology options for future underwater designs that would meet high safety standards as well as good economic potential, for construction in the 2030-2040 timeframe. The top five concepts selected from a survey of 13 nuclear technologies were compared to a small modular pressurized water reactor (PWR) designed with a conventional layout. In order of smallest to largest primary system size where the reactor and all safety systems are contained, the top five designs were: (1) a lead-bismuth fast reactor based on the Russian SVBR-100; (2) a novel organic cooled reactor; (3) an innovative superheated water reactor; (4) a boiling water reactor based on Toshiba's LSBWR; and (5) an integral PWR featuring compact steam generators. A similar study on potential attractive power cycles was also performed. A condensing and recompression supercritical $CO_2$ cycle and a compact steam Rankine cycle were designed. It was found that the hull size required by the reactor, safety systems and power cycle can be significantly reduced (50-80%) with the top five designs compared to the conventional PWR. Based on the qualitative economic consideration, the organic cooled reactor and boiling water reactor designs are expected to be the most cost effective options.

Multi-batch core design study for innovative small modular reactor based on centrally-shielded burnable absorber

  • Steven Wijaya;Xuan Ha Nguyen;Yunseok Jeong;Yonghee Kim
    • Nuclear Engineering and Technology
    • /
    • v.56 no.3
    • /
    • pp.907-915
    • /
    • 2024
  • Various core designs with multi-batch fuel management (FM) are proposed and optimized for an innovative small modular reactor (iSMR), focusing on enhancing the inherent safety and neutronic performance. To achieve soluble-boron-free (SBF) operation, cylindrical centrally-shielded burnable absorbers (CSBAs) are utilized, reducing the burnup reactivity swing in both two- and three-batch FMs. All 69 fuel assemblies (FAs) are loaded with 2-cylindrical CSBA. Furthermore, the neutron economy is improved by deploying a truly-optimized PWR (TOP) lattice with a smaller fuel radius, optimized for neutron moderation under the SBF condition. The fuel shuffling and CSBA loading patterns are proposed for both 2- and 3-batch FM with the aim to lower the core leakage and achieve favorable power profiles. Numerical results show that both FM configurations achieve a small reactivity swing of about 1000 pcm and the power distributions are within the design criteria. The average discharge burnup in the two-batch core is comparable to three-batch commercial PWR like APR-1400. The proposed checker-board CR pattern with extended fingers effectively assures cold shutdown in the two-batch FM scenario, while in the three-batch FM, three N-1 scenarios are failed. The whole evaluation process is conducted using Monte Carlo Serpent 2 code in conjunction with ENDF/B-VII.1 nuclear library.

A new design concept for ocean nuclear power plants using tension leg platform

  • Lee, Chaemin;Kim, Jaemin;Cho, Seongpil
    • Structural Engineering and Mechanics
    • /
    • v.76 no.3
    • /
    • pp.367-378
    • /
    • 2020
  • This paper presents a new design concept for ocean nuclear power plants (ONPPs) using a tension leg platform (TLP). The system-integrated modular advanced reactor, which is one of the successful small modular reactors, is mounted for demonstration. The authors define the design requirements and parameters, modularize and rearrange the nuclear and other facilities, and propose a new total general arrangement. The most fundamental level of design results for the platform and tendon system are provided, and the construction procedure and safety features are discussed. The integrated passive safety system developed for the gravity based structure-type ONPP is also available in the TLP-type ONPP with minor modifications. The safety system fully utilizes the benefits of the ocean environment, and enhances the safety features of the proposed concept. For the verification of the design concept, hydrodynamic analyses are performed using the commercial software ANSYS AQWA with the Pierson-Moskowitz and JONSWAP wave spectra that represent various ocean environments and the results are discussed.

Steam generator performance improvements for integral small modular reactors

  • Ilyas, Muhammad;Aydogan, Fatih
    • Nuclear Engineering and Technology
    • /
    • v.49 no.8
    • /
    • pp.1669-1679
    • /
    • 2017
  • Background: Steam generator (SG) is one of the significant components in the nuclear steam supply system. A variety of SGs have been designed and used in nuclear reactor systems. Every SG has advantages and disadvantages. A brief account of some of the existing SG designs is presented in this study. A high surface to volume ratio of a SG is required in small modular reactors to occupy the least space. In this paper, performance improvement for SGs of integral small modular reactor is proposed. Aims/Methods: For this purpose, cross-grooved microfins have been incorporated on the inner surface of the helical tube to enhance heat transfer. The primary objective of this work is to investigate thermal-hydraulic behavior of the proposed improvements through modeling in RELAP5-3D. Results and Conclusions: The results are compared with helical-coiled SGs being used in IRIS (International Reactor Innovative and Secure). The results show that the tube length reduces up to 11.56% keeping thermal and hydraulic conditions fixed. In the case of fixed size, the steam outlet temperature increases from 590.1 K to 597.0 K and the capability of power transfer from primary to secondary also increases. However, these advantages are associated with some extra pressure drop, which has to be compensated.