• Title/Summary/Keyword: Small brown plant hopper (SBPH)

Search Result 5, Processing Time 0.019 seconds

Analysis of the Factors Involved in the Occurrence of Rice Stripe virus in Chungcheongbukdo in 2008 and 2009 (2008-2009년 충북지역 벼 줄무늬잎마름병 발생 요인 분석)

  • Kang, Hyo-Jung;Ahn, Ki-Su;Han, Chong-U;Jeong, Kyeong-Heon;Park, See-Jung;Ji, Jae-Jun;Kim, Jeong-Soo
    • Research in Plant Disease
    • /
    • v.16 no.2
    • /
    • pp.109-114
    • /
    • 2010
  • The occurrence factors of Rice stripe virus (RSV) in Chungcheongbukdo were analyzed by investigating the viruliferous insect rate (VIR) of overwintered small brown plant hopper (SBPH), the population density of SBPH, the infection rate of natural host plants, and the occurrence rate of RSV on rice paddy fields at the 3 areas of Cheongwon, Jincheon, and Boeun in 2008 and 2009. The average VIR of overwintered SBPH was 0.0% in 2008 and 1.1% in 2009. From SBPH collected on early June in 2009, VIR was higher as 1.4% at Jincheon and 4.2% at Boeun than those of overwintered SBPH, and this higher VIR might relate stronlgy with the adult population of SBPH immigrated from China. The populations of SBPH at Cheongwon, Jincheon and Boeun in 2008 were 3.8, 7.5 and 20.8 Head/$m^2$, respectively. However, those of Cheongwon and Jincheon increased up to about two folds as 8.4 and 13.1 in 2009. No RSV was detected on the natural host plants including barley. The factors involved in RSV occurrence were affected negatively by the low VIR of overwintered SBPH, the low population of overwintered SBPH, the low infection rate of RSV on the natural host plants, and the clean cultivation environment in Chungcheongbukdo.

Analysis of the Occurrence of Rice stripe virus in Jeonnam Province (전남지역의 벼 줄무늬잎마름병 발생 분석)

  • Ko, Sug-Ju;Kang, Beom-Ryong;Kim, Do-Ik;Choi, Duck-Soo;Kim, Seon-Gon;Lee, Gwan-Seok;Kim, Chang-Seok;Choi, Hong-Soo;Kim, Hong-Jae;Kim, Jeong-Soo
    • Research in Plant Disease
    • /
    • v.17 no.3
    • /
    • pp.351-357
    • /
    • 2011
  • Occurrence of Rice stripe virus (RSV) was investigated in Jeonnam province from 2008 to 2011. Incidence of RSV was surveyed in paddy fields during growth stage. In western and southern coast parts of 5 districts, Jindo, Wando, Shinan, Haenam and Muan, rice was severely damaged by RSV from 2008 to 2009. But, RSV didn't almost occur in 2010. Viruliferous ratio (VIR) of RSV from overwintered small brown plant hopper (SBPH, Laodelphax striatellus) showed 4.7%, 11.3%, 8.7%, and 2.8% from 2008 to 2011. It was highly recorded in Jindo, Wando, and Shinan of southwestern area. SBPH was collected by sucking machine at 1 $m^2$ with 3 replications per paddy field in March. The density of SBPH was high on March, but low on April in non-cultivated barley field from winter to spring. Farmer's plowing this season assumed to be a cause of SBPH density decrease. The number of SBPH was 7.7, 5.4, and 4.0 per $m^2$ during three years, respectively.

Current Insights into Research on Rice stripe virus

  • Cho, Won Kyong;Lian, Sen;Kim, Sang-Min;Park, Sang-Ho;Kim, Kook-Hyung
    • The Plant Pathology Journal
    • /
    • v.29 no.3
    • /
    • pp.223-233
    • /
    • 2013
  • Rice stripe virus (RSV) is one of the most destructive viruses of rice, and greatly reduces rice production in China, Japan, and Korea, where mostly japonica cultivars of rice are grown. RSV is transmitted by the small brown plant-hopper (SBPH) in a persistent and circulative-propagative manner. Several methods have been developed for detection of RSV, which is composed of four single-stranded RNAs that encode seven proteins. Genome sequence data and comparative phylogenetic analysis have been used to identify the origin and diversity of RSV isolates. Several rice varieties resistant to RSV have been selected and QTL analysis and fine mapping have been intensively performed to map RSV resistance loci or genes. RSV genes have been used to generate several genetically modified transgenic rice plants with RSV resistance. Recently, genome-wide transcriptome analyses and deep sequencing have been used to identify mRNAs and small RNAs involved in RSV infection; several rice host factors that interact with RSV proteins have also been identified. In this article, we review the current statues of RSV research and propose integrated approaches for the study of interactions among RSV, rice, and the SBPH.

Incidence of Rice stripe virus during 2002 to 2004 in Korea and Chemical Control of Small Brown Plant Hopper (2002-2004년의 벼줄무늬잎마름병 발생상황 및 약제처리에 의한 애멸구의 화학적 방제)

  • Park, Jin-Woo;Jin, Tae-Seong;Choi, Hong-Soo;Lee, Su-Heon;Shin, Dong-Bum;Oh, In-Seok;Lee, Sang-Guei;Lee, Min-Ho;Choi, Byeong-Ryeol;Bae, Soon-Do;Kim, Jin-Young;Han, Kwang-Seop;Noh, Tae-Hwan;Ko, Sug-Ju;Park, Jong-Dae;Lee, Bong-Choon;Kim, Tae-Sung;Chung, Bu-Keun;Hong, Sung-Jun;Kim, Choong-Hoe;Park, Hyung-Man;Lee, Key-Woon
    • The Korean Journal of Pesticide Science
    • /
    • v.13 no.4
    • /
    • pp.309-314
    • /
    • 2009
  • Incidence of rice stripe disease, caused by Rice stripe tenuivirus (RSV), was surveyed during 2002 to 2004. The incidence area and ratio of diseased fields were decreased gradually during those period. Rate of diseased plants were 45.8%, 45.0% and 43.7% in the susceptible cultivars Chucheong, Saechucheong and Ilpum, respectively. However, the rate was 4.4% in resistant cultivar Hwaseong. In addition, breakdown rate was also significantly high in the susceptible cultivars in Chucheong, Saechucheong and Ilpum showing 33.6, 33.2 and 31.9%, respectively. In Hwaseong, the breakdown rate was 0.8%. Collection efficiency was compared between two insect vector collection methods. Insect-sucking machine method was much more efficient than sweeping net method in collecting small brown plant hopper (SBPH). According to the survey of the population density of the insect vector during 2002 to 2004, the national average population density was gradually decreased year by year, 3.6, 2.3, and 1.3%, respectively. This result was significantly related with the decrease of the incidence of rice stripe disease. Control efficiency of rice stripe disease by treating several seedling box and water surface with insecticides against SBPH resulted that imidacloprid GR, Fipronil FG, Clothianidin+Probenazole GR and Thiamethoxam GR showed over 80% of control efficiency at 28 days after treatment at the early stage in nursery.

Severe Outbreak of Rice Stripe Virus and Its Occurring Factors (벼줄무늬잎마름바이러스의 대 발생과 발생 요인)

  • Kim, Jeong-Soo;Lee, Gwan-Seok;Kim, Chang-Seok;Choi, Hong-Soo;Lee, Soo-Heon;Kim, Mi-Kyeong;Kwag, Hae-Ryun;Nam, Mun;Kim, Jeong-Sun;Noh, Tae-Hwan;Kang, Mi-Hyung;Cho, Jeom-Deog;Kim, Jin-Young;Kang, Hyo-Jung;Han, Jong-Woo;Kim, Byung-Ryun;Jeong, Sung-Soo;Kim, Ju-Hee;Kuo, Sug-Ju;Lee, Jung-Hwan;Kim, Tae-Sung
    • The Korean Journal of Pesticide Science
    • /
    • v.15 no.4
    • /
    • pp.545-572
    • /
    • 2011
  • The genetic diagnosis methods by RT-PCR and Virion capture (VC)/RT-PCR against Rice stripe virus (RSV) were developed. Three diagnosis methods of seedling test, ELISA and RT-PCR were compared in virus detection sensitivity (VDS) for RSV. The VDS of ELISA for RSV viruliferous small brown plant hopper (SBPH) was higher with 40.5% than that of seedling test. The VDS of RT-PCR was higher with 21% than that of ELISA. The VDS of ELISA and VC/RT-PCR was same with 9.2% in average on the SBPH collected from fields at the areas of Gimpo, Pyungtaeg and Sihueng, Gyeonggi province in 2009. The specific primers of RSV for SBPH and rice plant were developed for the diagnosis by Real time PCR. The RQ value of Real time PCR for the viruliferous and non viruliferous SBPH was 1 for 50 heads of non viruliferous SBPH, 96.5 for 50 heads of viruliferous SBPH, 23.1 for 10 heads of viruliferous SBPH + 40 heads of non viruliferous SBPH, and 75.6 for 30 heads of viruliferous SBPH + 20 heads of non viruliferous SBPH. The RQ value was increased positively by the ratio of viruliferous SBPH. Full sequences of 4 genomes of RSV RNA1, RNA2, RNA3 and RNA4 were analysed for the 13 RSV isolates from rice plants collected from different areas. Genetic relationships among the RSV isolates of Korea, Japan and China were classified as China + Korea, and China + Korea + Japan by phylogenetic analysis for RSV RNA1 and RNA2. In case of RNA3 involved in pathogenicity, genetic relationship of RSV among the three countries was grouped into 3 as China, China + Korea, and Korea + Japan. According to the genetic relationships in RSV RNA4, RSV isolates were grouped into 4 as China, Korea, China + Korea + Japan, and Korea + Japan. Viruliferous insect rate (VIR) of RSV in average increased in each year from 2008 to 2010, and the rates were 4.3%, 6.1%, and 7.2%, respectively, at the 28 major rice production areas in 7 provinces including Gyeonggido. The highest VIR in each year was 11.3% of Gyeonggido in 2008, 20.1% of Jellanamdo in 2009 and 14.2% of Chungcheongbukdo in 2010. The highest VIR depending upon the investigated areas was 22.1% at Buan of Jellabukdo in 2008, 36% at Wando and Jindo of Jellanamdo in 2009, and 30.0% at Boeun of Chungcheongbukdo in 2010. Average population density (APD) of overwintered SBPH was 13.1 heads in 2008, 13.9 heads in 2009 and 5.6 heads in 2010. The highest APD was 39.1 and 60.4 heads at Buan of Jellabukdo in 2008 and 2009, respectively, and 14.0 heads at Pyungtaeg of Gyeonggido. The acreage of RSV occurred fields was 869 ha in the western and southern parts, mainly at Jindo and Wando areas, of Jellanamdo in 2008. In 2009, RSV occurred in the acreage of 21,541 ha covered whole country, especially, partial and whole plant death were occurred with infection rate of 55.2% at 3,025 plots in 53 Li, 39 Eup/Myun, 19 Si/Gun of Gyeonggido, Incheonsi, Chungcheongnamdo, Jeollabukdo and Jeollanamdo. Seasonal development of overwintered SBPH was investigated at Buan, Jeollabukdo, and Jindo, Jeollanamdo for 3 years from 2008. Most SBPH developed to the 3rd and 4th instar on the periods of May 20 to June 10, and they developed to the adult stage for the 1st generation on Mid and Late June. In 2009, all SBPH trapped by sky net trap were adult on May 31 to June 1 at Mid-western aeas of Taean, Seosan and Buan, and South-western areas of Sinan and Jindo. The population density of adult SBPH was 963 heads at Taean, 919 at Seocheon and 819 at Sinan area. The origin of these higher population of adult SBPH were verified from the population of non-overwintered SBPH but immigrant SBPH. From Mid May to Mid June in 2010, adult SBPH could not be counted as immigrant insects by sky net trap. The variation of RSV VIR was high with 2.1% to 9.5% for immigrant adult SBPH trapped by sky net trap at Hongsung of Chungcheongbukdo, Buan of Jeollabukdo and so forth in 2009. The highest VIR for the immigrant adult SBPH was 9.5% at Boryung of Chungcheongnamdo, followed by 7.9% at Hongsung of Chungcheongnamdo, 6.5% at Younggwang of Jeollanamdo, and 6.4% at Taean of Cheongcheongnamdo. The infection rate of RSV on rice plants induced by the immigrant adult SBPH cultivated near sky net trap after about 10 days from immigration on June 12 in 2009 was 84.6% at Taean, 65.4% at Buan and 92.9% at Jindo, and 81% in average through genetic diagnosis of RT-PCR. Barley known as a overwintering host plant of RSV had very low infection rate of 0.2% from 530 specimens collected at 10 areas covering whole country including Pyungtaeg of Gyeonggido. Twenty nine plant species were newly recorded as natural hosts of RSV. In winter annual plant species, 11 plants including Vulpia myuros showed RSV infection rate of 24.9%. The plant species in summer annual ecotype were 13 including Digitaria ciliaris with 44.9%, Echinochloa crusgalli var. echinata with 95.2% and Setaria faberi with 65.5% in infection rate of RSV. Five perennial plants including Miscanths sacchariflorus with infection rate of 33.3% were recorded as hosts of RSV. Rice cultivars, 8 susceptible cultivars including Donggin1 and 17 resistant ones including Samgwang, were screened in field conditions at 3 different areas of Buan, Iksan and Ginje in 2009. All the susceptible cultivars were showed typical symptom of mosaic and wilt. In 17 genetic resistant cultivar, 12 cultivars were susceptible, however, 5 cultivars were field-resistant plus genetic resistant to RSV as non symptom expression. When RSV was artificially inoculated at seedling stage to 4 cultivars known as genetic resistant and 3 cultivars known as genetic susceptible, the symptom expression in resistant cultivars was lower as 19.3% in average than that of 53.3% in susceptible ones. In comparison of symptom expression rate and viral infection rate using resistant Nampyung and susceptible Heugnam cultivars by artificial inoculation of RSV at seedling stage, the symptom expression of Heugnam was higher as 28% than 12% of Nampyung. However, virion infection of resistant Nampyung cultivar was higher as 12% reversely than 85% of susceptible Heugnam. Yield loss of rice was investigated by the artificial inoculation of RSV at the seedling stage of resistant cultivars of Nampyung and Onnuri, and susceptible cultivars of Donggin1 and Ungwang for 3 years from 2008. The average yield per plant was 7.8 g, 8.5 g and 13.8 g on rice plants inoculated at seedling stage, tillering stage and maximum tillering stage, respectively. The yield loss rate was increased by earlier infection of RSV with 51% at seedling stage, 46% at tillering stage and 13% at maximum tillering stage. In resistant rice cultivars, there was no statistically significant relation between infection time and yield loss. In natural fields on susceptible rice cultivar of Ungwang at Taean and Jindo areas in 2009, the yield loss rate was increased with same tendency to the infection hill rate having the corelation coefficient of 0.94 when the viral infection was over 23.4%.