• Title/Summary/Keyword: Small Turbojet Engine

Search Result 21, Processing Time 0.022 seconds

Development of Practical Integral Condition Monitoring System for A Small Turbojet Engine Using SIMULINK and LabVIEW (SIMULINK와 LabVIEW를 이용한 소형 터보제트 엔진의 실용 통합 상태 진단 시스템 개발)

  • Kong, Changduk;Kho, Seonghee;Park, Gilsu;Park, Gwanglim
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.1
    • /
    • pp.80-88
    • /
    • 2013
  • In currently developed engine condition monitoring systems, most field engine maintenance engineers have difficulties to use them in fields due to complexity, unpractical use, lack of understanding, etc. Therefore a practical usable engine condition monitoring system must be needed. This work proposes a practical performance condition monitoring of a small turbojet engine through comparing between the on-line performance monitoring data and the initial clean performance data calculated by the base engine performance model. Moreover the proposed monitoring system checks the gas path components' on-line health condition through comparing the component performance characteristics between the running engine represented as a deteriorated engine or a degraded engine and the base engine performance model represented as a clean engine. The proposed condition monitoring system is coded in a friendly GUI type program for easy practical application by a commercial tool, MATLAB/SIMULINK and LabVIEW.

Small Turbojet Engine Test and Uncertainty Analysis (소형 터보제트 엔진 시험 및 불확도 분석)

  • Jun, Yong-Min;Yang, In-Young;Nam, Sam-Sik;Kim, Chun-Taek;Yang, Soo-Seok;Lee, Dae-Sung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.5
    • /
    • pp.118-126
    • /
    • 2002
  • The Altitude Engine Test Facility(AETF) was built at the Korea Aerospace Research Institute and has been being operated for the gas turbine engines in the class of 3,000 lbf thrust. To enhance the confidence level of AETF to the international level, a series of studies and facility modification have been conducted to improve the measurement uncertainty and reliability. In this paper, some part of the facility evaluation tests performed with a single spool turbojet engine are introduced. Tests were performed simulating the flight conditions as steady state, sea level for various flight speeds (i.e., Mn=0.3, 0.5, 0.7, 0.9). The obtained test results are compared with the predicted values of the engine DECK. The measurement uncertainties of airflow, net thrust, fuel flow and SFC showed 0.791~0.914%, 0.851~1.706%, 1.372~7.348% and 1.642~5.205%, respectively. Thus, from this research, the improvement methods of uncertainties on AETF has been confirmed.

Study on the effect of Jet Fuel alteration on Turbine Engine Performances through Turbine Engine Test (터빈엔진시험을 통한 제트연료 변경에 따른 엔진성능 변화 연구)

  • Kim, You-Il;Min, Seong-Ki
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.2
    • /
    • pp.23-28
    • /
    • 2011
  • The engine ground and altitude tests were carried out to investigate the effect of jet fuel alteration on the performance of a small turbojet engine. JP-S was supplied 8% higher than JP-8 by fuel metering system at the same command. The employment of JP-S showed the similar starting characteristic to that of JP-8, however, difference in the ignition time and acceleration rate of engine speed due to the difference of fuel flow rate by fuel metering system was observed. In spite of jet fuel alteration, the test results yield the similar steady-state engine performance in net thrust, air flow, exhaust gas temperature, etc. On the other hand, the fuel consumption of JP-S increased by 5 % compared with that of JP-8. In point of specific fuel consumption (SFC), SFC of JP-S was approximately 1.1~2.6 %, 5 % higher than that of JP-8 in ground and altitude tests respectively at the same thrust.

Study on the effect of Jet Fuel alteration on Turbine Engine Performances through Turbine Engine Test (터빈엔진시험을 통한 제트연료 변경에 따른 엔진성능 변화 연구)

  • Kim, You-Il;Min, Seong-Ki
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.410-415
    • /
    • 2010
  • The engine ground and altitude tests were carried out to investigate the effect of jet fuel alteration on the performance of a small turbojet engine. JP-S was supplied 8% higher than JP-8 by fuel metering system at the same command. The employment of JP-S showed the similar starting characteristic to that of JP-8, however, difference in the ignition time and acceleration rate of engine speed due to the difference of fuel flow rate by fuel metering system was observed. In spite of jet fuel alteration, the test results yield the similar Steady-State engine performance in Net thrust, Air flow, Exhaust Gas Temperature, etc. On the other hand, the Fuel consumption of JP-S increased by 5 % compared with that of JP-8. In point of Specific Fuel Consumption (SFC), SFC of JP-S was approximately 1.1~2.6 %, 5 % higher than that of JP-8 in ground and altitude tests respectively at the same thrust.

  • PDF

Steady-State and Transient Performance Simulation of a Turboshaft Engine with a Free Power Turbine

  • King, Chang-Duk;Chung, Suk-Choo
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.11
    • /
    • pp.1296-1304
    • /
    • 2000
  • A program of steady-state and transient performance analysis for a 200kW-class small turboshaft engine with free power turbine was developed. An existing turbojet engine was used for the gas generator of the developed turboshaft engine, which was modified to satisfy performance requirements of this turboshaft engine. To verify the accuracy of steady-state performance program for this engine: the program was applied to the gas turbine test unit of the same type, and the analysis results were compared with experimental results. The developed transient performance analysis program using the CMF (Constant Mass Flow) method was utilized to analyze the cases of step increase and ramp increase of the fuel.

  • PDF

Infrared Signal Measurement with Bypass Ratio in a Small Engine Simulating a Turbofan (터보팬을 모사한 소형 엔진에서의 바이패스 비에 따른 적외선 신호 측정)

  • Choi, Jaewon;Jang, Hyeonsik;Kim, Hyemin;Choi, Seongman
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.5
    • /
    • pp.34-42
    • /
    • 2020
  • In modern air combat, infrared signals play an important role in the detection of opponents and must be reduced to improve survivability and stealth. In particular, IR signals generated in the wake of aircraft engines have high intensity and short wavelengths, so most heat-tracking missiles detect these signals. Accordingly, the measurement and characteristic analysis of Gas radiation signals from the engine's wake were carried out in this study. Micro turbojet engine has been configured to simulate a real aircraft turbofan engine, and the characteristics of IR signal reduction by adjusting the bypass ratio were identified. Through this, the IR signal characteristics for each wavelength are analyzed and verification of signal reduction technologies is performed.

Development of the Performance Test Cell Using the Small Gas Turbine Engine of 80 lbf-Thrust (80lbf급 소형 가스터빈 엔진의 성능 시험장치 개발)

  • Jin, Hak-Su;Kho, Seong-Hee;Ki, Ja-Young;Yong, Seong-Ju;Kang, Myoung-Cheol;Lee, Eun-Woo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.495-498
    • /
    • 2010
  • This test cell is developed to the institutes or laboratories research and study gas turbine engine for academic purpose with this test data to provide the fundamentals of operational mechanism and structural configuration, and further to verify thermodynamic calculation The test cell is installed to monitor and compare real-time data with reference engine model performance simulation data. using by NI DAQ(Data acquisition)device and LabVIEW program based on 80 lbf-micro turbojet engine.

  • PDF

Cause of Fuel Leakage from the Inner Piston Packing of Afterburner Fuel Pump in an Aircraft J85-GE-21 Turbojet Engine (전투기 J85-GE-21 터보제트 엔진 후기 연소기 연료펌프의 내부 피스톤 패킹 연료 누출 원인)

  • Kim, Ik-Sik;Hwang, Young-Ha;Sohn, Kyung-Suk;Lee, Jung-Hun;Kim, Sung-Uk
    • Elastomers and Composites
    • /
    • v.49 no.4
    • /
    • pp.305-312
    • /
    • 2014
  • Most of military supersonic aircraft use an afterburner. It plays an important role in performing unusual duties for supersonic flight, takeoff, and combat situations. Recently, repetitive fuel leakage from the inner piston packing rubber of afterburner fuel pump in an aircraft J85-GE-21 turbojet engine has happened. These failures have only happened in one manufacturer's parts of two manufacturers. Thus, the cause of these failures was investigated through the comparative analysis for both the failed and the unfailed with two different manufacturers using various analysis methods. The failure analysis was performed using analysis methods such as swelling or swelling ratio, total sulfur content, polymer identification, loading and surface area of carbon black, and hardness. Consequently, the main cause of this failure was identified to be insufficient loading of carbon black as a reinforcing agent, together with small surface area of carbon black and somewhat low sulfur content.

A Dynamic Simulation and LQR Control for Performance Improvement of Small Turbojet Engine (소형 터보제트엔진의 동적모사와 성능향상을 위한 LQR 제어)

  • 공창덕;기자영;김석균
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.55-60
    • /
    • 1997
  • A nonlinear dynamic simulation was performed by using DYNGEN program with various environmental conditions. It was observed that the effect of the bleed air flow rate changed to overall engine performance. The real time linear model which was a function of rpm was resulted to be close to nonlinear simulation results. For optimal LQR controller, it was considered only fuel flow rate or both fuel flow rate and bleed air rate as inputs. In the comparison of both results, the LQR controller with multi input had better performance than that with single input.

  • PDF

A Dynamic Simulation for Small Turboshaft Engine with Free Power Turbine Using The CMF Method (CMF 기법을 이용한 소형 분리축 방식 터보축 엔진의 동적모사)

  • 공창덕;기자영
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.2 no.1
    • /
    • pp.13-20
    • /
    • 1998
  • A steady-state and dynamic simulation program for a small multi-purpose turboshaft engine with the free power turbine was developed. In order to reduce developing cost, time and risk, a turbojet engine whose performance was well-known was used for the gas generator, and life time was improved by replacing turbine material and by using Larson-Miller curves. The component characteristic of the power turbine was derived from scaling the gas generator turbine. Equilibrium equations of mass flow rate and work were used for the steady-state performance analysis, and the Constant Flow Method(CMF) was used for the dynamic performance simulation. The step fuel scheduling was carried out for acceleration in the dynamic simulation. Through this simulation, it was found that the overshoot of the turbine inlet temperature exceeded over the compressor turbine limit temperature.

  • PDF