• Title/Summary/Keyword: Small Hydro-Power

Search Result 175, Processing Time 0.025 seconds

소수력 발전시스템 무인화 개발

  • Park, Bong-Il;Park, Wan-Sun;Park, Joon-Sik
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.511-514
    • /
    • 2006
  • 1. 소수력 발전시스템의 자동화 및 고장진단 알고리즘, 2. 종합 제어시스템의 성능 실험과 원격제어 시스템의 개발, 3. 소수력 발전 시스템의 무인 종합 제어시스템 개발

  • PDF

Performance evaluation facilities and evaluation methods for hydropower equipment (해외 수력발전설비 성능평가설비 및 평가 방법)

  • Kim, Youngjoon;Kim, Yongyeol;Cho, Yong;Ko, Jaemyoung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.194-194
    • /
    • 2010
  • The variable demand on the energy market, as well as the limited energy storage capabilities, requires a great flexibility in operating hydraulic turbines. But, present in Korea, the absence of testing laboratories and technical criteria for the performance test of small hydropower degrades the efficiency of the domestic hydropower machines, A performance guarantees for hydro turbines shall be contain, as a minimum, guarantees covering power, discharge and specific hydraulic energy, efficiency, maximum momentary overspeed and maximum momentary pressure and/or maximum steady-state runaway speed, as well as guarantees related to cavitation. Performance test are conducted by the test standard. Test codes based on extensive research data are written under the leadership of an IEC. Performance evaluation is carry out several test(performance test, cavitation test and runaway test). The paper presents the international turbine test laboratory and performance test standard.

  • PDF

Hydrologic Analysis Methods for Performance Characteristics of Small Hydro Power Plant (소수력발전소의 수문학적 성능특성 분석)

  • Park, Wan Soon;Lee, Chul Hyung;Shim, Myung Pil
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.5
    • /
    • pp.1159-1166
    • /
    • 1994
  • This study presents the methodology for the performance analysis and prediction of small hydro power plants(SHP). Rainfall data are characterized to estimate the flow duration curve of SHP, using the cumulative density function of Weibull distribution. The model for the performance analysis of SHP is developed. Also, the performance characteristics of the existing Anheung Plant located in Han River basin are analyzed by using the developed model. As a result, it was found that the model is suitable to analyze the performance characteristics of existing SHP and to predict the primary design performance such as the design flowrate, capacity, rate of operation and annual electricity production of SHP.

  • PDF

Overview and Trend of Small Hydropower Development in Korea (국내 소수력발전 기술개발 현황과 전망)

  • Lee, G.B.;Lee, E.W.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.735-741
    • /
    • 2005
  • We have studied the prearranged plan and the economy of a candidate site for the development of small hydro power. And also we have confirmed its economy by suggesting the technology of the unmanned operation and the selection of the water turbine generator which has a great efficiency, working rate and suitability to the topographical characteristics of various development sites, for example, irrigation reservoirs, water works pipes, sewage systems and cooling water of a steam power station. We proposed some opinions such as the better improvement of small hydropower industry the people' view, cooperation among industry/university/ research institutes, remote control/maintenance and goverment's legislature and supporting system etc.

  • PDF

Hydraulic Performance Characteristics of Kaplan Turbine (카프란수차의 수력학적 성능특성)

  • Lee C. H.;Park W. S.
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.443-446
    • /
    • 2005
  • The Kaplan turbine model has been tested and analyzed. The blade angle and the guide vane opening of the turbine model were designed to be varied according to the best combination of guide vane and runner blade opening. When the changes in head and output were comparatively large, the efficiency drop were small, so the efficiency characteristics and stability of the entire operating condition were maintained in good condition. These results showed that the developed model in this study will be suitable for small hydro power stations with large changes in head and load.

  • PDF

Flow characteristics analysis and test in the Pelton turbine for pico hydro power using surplus water (잉여 유출수를 이용한 소수력발전용 수차의 유동특성 해석 및 시험)

  • Jeong, Seon Yong;Lee, Kye Bock
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.4
    • /
    • pp.325-331
    • /
    • 2016
  • Computational fluid numerical analysis using the commercial code CFX was performed to develop a Pelton turbine for a pico hydro power generator using the circulating water of a cooling tower in a large building. The performance of the Pelton turbine was examined for different design factors, such as the bucket shape, in which the Pelton wheel was connected in an appropriate manner to the pipe section, and the number of buckets in order to find the optimal design of Pelton turbine for a pico hydro power using surplus water. A benchmark test was carried out on the manufactured small scale Pelton turbine to validate the design method of the Pelton turbine by numerical analysis. The results obtained by comparing the flow characteristics and power output measured using the ultrasonic flowmeter, the pressure transducer and the oscilloscope with the numerical results confirmed the validity of the analytical design method. The possibility of developing Pelton turbines for kW class pico hydro power generators using surplus water with an average circulation velocity of 1.2 m/s for the chosen bucket shape and number of buckets in a 30 m high building was confirmed.

A study on the performance and internal flow of inline Francis turbine

  • Chen, Chengcheng;Inagaki, Morihito;Choi, Young-Do
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.10
    • /
    • pp.1225-1231
    • /
    • 2014
  • This paper presents the performance characteristic of a Francis hydro turbine with an inline casing. This turbine is designed for city water supply system. Due to large changes in ground elevation with high points and low points, some systems may experience larger-than-normal required pressures in areas with low ground elevations. One way to dissipate these excess pressures is by the use of an inline-turbine instead of an inline-pressure reducing valve. For best applicability and minimal space consumption, the turbine is designed with an inline casing instead of the common spiral casing. As a characteristic of inline casing, the flow accesses to the runner in the radial direction, showing a low efficiency. The installation of vanes improves the internal flow and gives the positive encouragement to the output power. For the power transmission to the outside of the turbine casing from the runner axis, a belt passage is designed in the inline casing, as its influence, the region after the belt passage shows a relatively low output power. The clearance gap in the runner side space is considered, in which a small volume of flow is contracted into the clearance gap, forming the leakage flow. The leakage flow leads to a decrease in the efficiency.

Design Analysis and Economic Analysis of high Efficiency 100kW Generator for Hydro Power System (소수력 발전용 고효율 100kW 발전기의 설계해석 및 경제성 분석)

  • Jee, In-Ho;Kang, Seung-Jin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.3
    • /
    • pp.428-438
    • /
    • 2016
  • This paper shows the design of the 100 kW IPMSG for small hydraulic power generator. The high-efficient generator, method of the dual layer interior permanent magnet was studied to improve the method of the single layer interior permanent magnet, which is mostly used. Analysis of magnet arrangement and cogging torque was done by FEM. According to structure analysis of dual layer interior permanent magnet, the amount of usage of the permanent magnet was reduced and cogging torque was decreased as well. With these successful results, the high-efficient generator design was accomplished. Based on the results of the structure analysis, the test product was designed and manufactured. And the design values and performance outputs were compared and verified with success. Also, the economic feasibility was conducted based on the electric power generated from the test product installed at the site. By the B/C analysis, in case that only SMP was analyzed, B/C ratio was 1.24 at the discount ratio of 5.5%, which considered to be economically feasible. The study is expected to be used for the application of developing large scale high-efficient interior permanent magnet synchronous generator.

A Study on the Friction and Wear Characteristics of Contact Sealing Units for a Small Hydro-power Turbine Under Various Rubbing Conditions (마찰접촉조건에 따른 소수력 수차용 밀봉장치의 마찰.마멸특성 연구)

  • Kim, Chung-Kyun
    • Tribology and Lubricants
    • /
    • v.22 no.6
    • /
    • pp.314-319
    • /
    • 2006
  • In this paper, the friction and wear characteristics of contact type sealing unit far a water turbine have been presented. The sealing unit for a small hydropower generation is to stop a leakage of circulating water from an outside of an impeller to an inside of a rolling bearing. The friction heating between a seal ring and a seal seat may radically increase a surface temperature in which increase a power loss and wear on the rubbing surface. The surface wear strongly affect to the seal life of a mechanical face seal. In this study, the hardness of a stainless steel in which is a heat-treated is 892.8 in Victors hardness and the hardness of silicone carbide of SiC is 714.1 in Victors hardness. The surface hardness of a heat-treated stainless steel is 25% high compared with that of a ceramic material of SiC. The contact modes of rubbing surfaces are a dry friction, a water film friction and a mixed friction that is contaminated by a dust, silt, and moistures, etc. These two factors of a contact rubbing modes and a material property are very important parameters on the tribological performance such as a friction and wear between a seal ring and a seal seat in primary sealing unit. The experimental result shows that the surface hardness of a seal material is very important on the friction coefficient and a wear volume. Thus, the results recommend higher hardness of a seal material, which may reduce a friction loss and increase a wear life of primary seal components.