• Title/Summary/Keyword: Small Gas Turbine Engine

Search Result 69, Processing Time 0.027 seconds

Axial Turbine Aerodynamic Design of Small Heavy-Duty Gas Turbines (발전용 소형가스터빈의 축류터빈 공력설계)

  • Kim, Joung Seok;Lee, Wu Sang;Ryu, Je Wook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.4
    • /
    • pp.415-421
    • /
    • 2013
  • This study describes the aerodynamic design procedure for the axial turbines of a small heavy-duty gas turbine engine being developed by Doosan Heavy Industries. The design procedure mainly consists of three parts: namely, flowpath design, airfoil design, and 3D performance calculation. To design the optimized flowpath, through-flow calculations as well as the loss estimation are widely used to evaluate the effect of geometric variables, for example, shape of meridional plane, mean radius, blades axial gap, and hade angle. During the airfoil design procedure, the optimum number of blades is calculated by empirical correlations based on the in/outlet flow angles, and then 2D airfoil planar sections are designed carefully, followed by 2D B2B NS calculations. The designed planar sections are stacked along the spanwise direction, leading to a 3D surfaced airfoil shape. To consider the 3D effect on turbine performance, 3D multistage Euler calculation, single row, and multistage NS calculations are performed.

Exhaust-Gas Heat-Recovery System of Marine Diesel Engine (I) - Energy Efficiency Comparison for Working Fluids of R245fa and Water - (선박용 디젤엔진의 배기가스 열회수 시스템 (I) - R245fa 및 Water 의 작동유체에 대한 에너지효율 비교 -)

  • Choi, Byung-Chul;Kim, Young-Min
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.3
    • /
    • pp.293-299
    • /
    • 2012
  • The thermodynamic efficiency characteristics of R245fa and water as working fluids have been analyzed for the electricity generation system applying the Rankine cycle to recover the waste heat of the exhaust gas from a diesel engine for the propulsion of a large ship. The theoretical calculation results showed that the cycle, system, and total efficiencies were improved as the turbine inlet pressure was increased for R245fa at a fixed mass flow rate. In addition, the net work rate generated by the Rankine cycle was elevated with increasing turbine inlet pressure. In the case of water, however, the maximum system efficiencies were demonstrated at relatively small ratios of mass flow rate and turbine inlet pressure, respectively, compared to those of R245fa. The optimized values of the net power of the cycle, system efficiency, and total efficiency for water had relatively large values compared to those of R245fa.

Technical Trends for Small Aircraft Propulsion (소형항공기 추진기관 기술동향)

  • Kim, Keun-Bae
    • Current Industrial and Technological Trends in Aerospace
    • /
    • v.6 no.1
    • /
    • pp.35-43
    • /
    • 2008
  • Technical trends of propulsion system for small aircraft are investigated. Currently, most small aircraft are equipped with piston engine, turboprop and turbofan engines, and the technology development is going continuously. For piston engines, new diesel engines are arising besides gasoline engine. The diesel engines use relatively low-cost and easy to get fuel(Jet A), so the demand for small aircraft is getting increased, and new engines with high reliability and efficiency are being developed. For gas turbine engines, application of small turbofan is getting increased for newly arising VLJ market and the engine demand will be rapidly increased in the future. On the other hand, some electric propulsions without fossil fuels are being developed without high cost of fuel and environmental effects. In the future, propulsion system for small aircraft will be developed having enhancement of performance and efficiency with higher reliability and safety.

  • PDF

Performance Test of a Small Simulated High-Altitude Test Facility for a Gas-turbine Combustor (가스터빈 저온/저압 점화장치 구성 및 운영조건 확인 시험)

  • Kim, Tae-Woan;Lee, Yang-Suk;Ko, Young-Sung;Lim, Byeung-Jun;Kim, Hyeong-Mo;Kim, Sun-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.153-156
    • /
    • 2008
  • Ignition and combustion performance of a gas-turbine engine were changed by various high-altitude condition. A goal of this study is to make the small test facility to simulate high-altitude condition. To perform the low pressure condition, a diffuser was used in various diffuser front of primary nozzle pressure. To perform the low temperature, heat exchanger was used in various mixture ratio of cryogenic air and ambient temperature air. The experimental result shows that high-altitude conditions can be controled by diffuser front of primary nozzle pressure and mixture ratio of cryogenic air and ambient temperature air.

  • PDF

Uncertainty Analysis and Improvement of an Altitude TestFacility for Small Jet Engines

  • Jun, Yong-Min;Yang, In-Young;Kim, Chun-Taek;Yang, Soo-Seok;Lee, Dae-Sung
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.5 no.1
    • /
    • pp.46-56
    • /
    • 2004
  • The verification and improvement of the measurement uncertainty have beenperformed in the altitude test facility for small gas turbine engines, which was built atthe Korea Aerospace Research Institute (KARI) in October 1999. This test is performedwith a single spool turbojet engine at several flight conditions. This paper discussesthe evaluation and validation process for the measurement uncertainty improvements usedin the altitude test facility. The evaluation process, defined as tests before the facilitymodification, shows that the major contnbutors to the measurement uncertainty are theflow meter discharge coefficient, the inlet static and total pressures, the cell pressureand the fuel flow rate. The measurement uncertainty is focused on the primary parametersof the engine performance such as airflow rate, thrust and specific fuel consumption (SFC).The validation process, defined as tests after the facility modification, shows that themeasurement uncertainty, in seal level condition, is tmproved to the acceptable level throughthe facility modification. In altitude test conditions, the measurement uncertainties arenot improved as much as the uncertainty in sea level condition.

Study of Design Optimization of Reverse-Annular Type Combustor for Small Gas Turbine Engine (선회형 보염구조의 환형 역류형 연소기 최적화)

  • Park, Hee-Ho;Kim, Ki-Tae;Sung, Ok-Seok;Lim, Byeung-Jun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.401-405
    • /
    • 2011
  • Although the APU combustors were developed successfully, it could face many unexpected hardships in a engine or a system operated under the severe environment. This study is to be verified and settled by experimently and analytically of the problems and issues occurred in a variety of engine and system operation tests.

  • PDF

Combustion Performance Tests of Fuel-Rich Gas Generator for Liquid Rocket Engine Using an Impinging Injector (충돌형 분사기 형태의 액체로켓엔진용 가스발생기 연소성능시험)

  • 한영민;김승한;문일윤;김홍집;김종규;설우석;이수용;권순탁;이창진
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.8 no.2
    • /
    • pp.10-17
    • /
    • 2004
  • The results of the combustion performance tests of gas generator which supplies hot gas into the turbine of turbo-pump for liquid rocket engine and uses LOx and kerosene as propellant are described. The gas generator consists of a injector head with F-O-F impinging injector, a water cooled combustion chamber, a gas torch igniter, a turbulence ring and an instrument ring. The effect of turbulence ring and combustion chamber length on performance of gas generator are investigated. The ignition and combustion at design point are stable and the pressure and gas temperature at gas generator exit meets the target. The turbulence ring installed at middle of chamber effectively mixes hot gas with cold gas and the effect of residence time of hot gas in gas generator on combustion efficiency is small. Test results show that the main parameter controlling the gas temperature at gas generator exit is overall O/F ratio.

Improvement on Performance Simulation Using Component Maps of Aircraft Gas Turbine Obtained from System Identification (시스템 식별로 구한 구성품 성능선도를 이용한 개선된 가스터빈 성능해석 연구)

  • Kong, Chang-Duk;Kho, Seong-Hee;Ki, Ja-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.6
    • /
    • pp.96-103
    • /
    • 2004
  • Sought a set of component performance lines from experiment data or some data supplied in the engine manufacturer to improve the traditional scaling method and suggested a map scaling method that construct component performance lines newly using polynomial equations of MATLAB program. In this study, applied technique that is proposed newly to PT6A-62 that verified technique that is proposed newly using experiment data of small. size turboshaft engine, and is actuality aircraft engine. In identification of the component maps of the turboprop engine, the simulated performance using the proposed scaling method was compared with the real engine performance data and the performance using the traditional scaling method.

Spray Characteristics of the Rotary Atomizer for the Slinger Combustor (슬링거 연소기의 회전형 분사장치의 분무특성 연구)

  • Choi, Hyun-Kyung;Lee, Dong-Hun;You, Gyung-Won;Choi, Seong-Man
    • Journal of ILASS-Korea
    • /
    • v.13 no.3
    • /
    • pp.149-155
    • /
    • 2008
  • An experimental study was performed to understand spray characteristics of the rotary atomizer for the slinger combustor. In this fuel injection system, fuel is injected and atomized in the combustor by centrifugal forces to engine shaft. The experimental apparatus consists of a high speed rotational spindle, rotary atomizer, pressure tank and acrylic case. The droplet size and velocity were measured by PDPA (phase Doppler particle analyzer), and spray was visualized by using high speed camera and Nd:Yag laser-based flash photography. From the test results, the droplet size (SMD) is largely affected by rotational speed, mass flow rate and the number of orifice. As the experimental results, we could understand the spray characteristics of the rotary atomizer for the slinger combustor and obtain the optimum shape of the rotary atomizer which is suitable for the small gas turbine engine.

  • PDF

A Study on the Performance Improvement and Modeling of Generator for Small Gas Turbine Engine (소형 가스터빈 엔진용 발전기 성능개선 및 모델링 연구)

  • Kim Insoo;Yoon Hyunro
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.7 no.3 s.18
    • /
    • pp.174-183
    • /
    • 2004
  • In this paper, the performance improvement and modeling of small onboard generator were described. As the characteristics of the field coil which are a major parameters of generator were improved, the system bandwidth could be increased, therefore the generator could also be satisfied with fast characteristic loads. Established the brief control model of the generator, it could be possible to do the analysis of generator performance, and improve the operational stability of the generator system using the control model.