• 제목/요약/키워드: Smagorinsky model

검색결과 64건 처리시간 0.024초

LES를 이용한 판토그라프 팬헤드의 와 흘림 현상 해석 (ANALYSIS OF VORTEX SHEDDING PHENOMENA AROUND PANTOGRAPH PANHEAD FOR TRAIN USING LARGE EDDY SIMULATION)

  • 장용준
    • 한국전산유체공학회지
    • /
    • 제16권2호
    • /
    • pp.17-23
    • /
    • 2011
  • The turbulent flow and vortex shedding phenomena around pantograph panhead of high speed train were investigated and compared with available experimental data and other simulations. The pantograph head was simplified to be a square-cross-section pillar and assumed to be no interference with other bodies. The Reynolds number (Re) was 22,000. The LES(large eddy simulation) of FDS code was applied to solve the momentum equations and the Wener-Wengle wall model was employed to solve the near wall turbulent flow. Smagorinsky model($C_s$=0.2) was used as SGS(subgrid scale) model. The total grid numbers were about 9 millions and the analyzed domain was divided into 12 multi blocks which were communicated with each other by MPI. The time-averaged mainstream flows were calculated and well compared with experimental data. The phased-averaged quantities had also a good agreement with experimental data. The near-wall turbulence should be carefully treated by wall function or direct resolution to get successful application of LES methods.

Numerical investigation of truck aerodynamics on several classes of infrastructures

  • Alonso-Estebanez, Alejandro;del Coz Diaz, Juan J.;Rabanal, Felipe P.A lvarez;Pascual-Munoz, Pablo;Nieto, Paulino J. Garcia
    • Wind and Structures
    • /
    • 제26권1호
    • /
    • pp.35-43
    • /
    • 2018
  • This paper describes the effect of different testing parameters (configuration of infrastructure and truck position on road) on truck aerodynamic coefficients under cross wind conditions, by means of a numerical approach known as Large Eddy Simulation (LES). In order to estimate the air flow behaviour around both the infrastructure and the truck, the filtered continuity and momentum equations along with the Smagorinsky-Lilly model were solved. A solution for these non-linear equations was approached through the finite volume method (FVM) and using temporal and spatial discretization schemes. As for the results, the aerodynamic coefficients acting on the truck model exhibited nearly constant values regardless of the Reynolds number. The flat ground is the infrastructure where the rollover coefficient acting on the truck model showed lowest values under cross wind conditions (yaw angle of $90^{\circ}$), while the worst infrastructure studied for vehicle stability was an embankment with downward-slope on the leeward side. The position of the truck on the road and the value of embankment slope angle that minimizes the rollover coefficient were determined by successfully applying the Response Surface Methodology.

영역분할법과 유한요소해석을 이용한 유동장의 병렬계산 (Parallel Computation of a Flow Field Using FEM and Domain Decomposition Method)

  • 최형권;김범준;강성우;유정열
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.55-58
    • /
    • 2002
  • Parallel finite element code has been recently developed for the analysis of the incompressible Wavier-Stokes equations using domain decomposition method. Metis and MPI libraries are used for the domain partitioning of an unstructured mesh and the data communication between sub-domains, respectively. For unsteady computation of the incompressible Navier-Stokes equations, 4-step splitting method is combined with P1P1 finite element formulation. Smagorinsky and dynamic model are implemented for the simulation of turbulent flows. For the validation performance-estimation of the developed parallel code, three-dimensional Laplace equation has been solved. It has been found that the speed-up of 40 has been obtained from the present parallel code fir the bench mark problem. Lastly, the turbulent flows around the MIRA model and Tiburon model have been solved using 32 processors on IBM SMP cluster and unstructured mesh. The computed drag coefficient agrees better with the existing experiment as the mesh resolution of the region increases, where the variation of pressure is severe.

  • PDF

병렬 유한요소 해석기법을 이용한 유동장 해석 (Parallel Finite Element Simulation of the Incompressible Navier-stokes Equations)

  • 최형권;김범준;강성우;유정열
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2002년도 춘계 학술대회논문집
    • /
    • pp.8-15
    • /
    • 2002
  • For the large scale computation of turbulent flows around an arbitrarily shaped body, a parallel LES (large eddy simulation) code has been recently developed in which domain decomposition method is adopted. METIS and MPI (message Passing interface) libraries are used for domain partitioning and data communication between processors, respectively. For unsteady computation of the incompressible Wavier-Stokes equation, 4-step splitting finite element algorithm [1] is adopted and Smagorinsky or dynamic LES model can be chosen fur the modeling of small eddies in turbulent flows. For the validation and performance-estimation of the parallel code, a three-dimensional laminar flow generated by natural convection inside a cube has been solved. Then, we have solved the turbulent flow around MIRA (Motor Industry Research Association) model at $Re = 2.6\times10^6$, which is based on the model height and inlet free stream velocity, using 32 processors on IBM SMP cluster and compared with the existing experiment.

  • PDF

LARGE EDDY SIMULATIONS OF TUMBLE AND SWIRL FORMATIONS IN ENGINE IN-CYLINDER FLOW

  • Lee, B.S.;Lee, J.S.
    • International Journal of Automotive Technology
    • /
    • 제7권4호
    • /
    • pp.415-422
    • /
    • 2006
  • Swirl and tumble flows in an engine in-cylinder have been simulated by using a three-dimensional computational fluid dynamics code, and the results are validated in comparison with experimental data. The large eddy simulation based on the Smagorinsky model and the fractional step method is adopted to describe the turbulence of in-cylinder flows and to save computing time, respectively. The main purpose of this study is connected with the effect of various conditions of intake flows on formation and development of in-cylinder tumble and swirl motions. The engine speeds considered are 1000 rpm and 3000 rpm for intake flows with inclination angles between $-10^{\circ}$ and $20^{\circ}$ at deflection angles of $0^{\circ}$, $22.5^{\circ}$, and $30^{\circ}$. The results are discussed by visualizing flow fields and by evaluating parameters in relation to vortex intensity such as swirl and tumble ratios.

Fractional Step 방법과 Compact Pade 차분화를 이용한 원형 실린더 주위의 난류 유동해석 (Turbulent Flow Analysis of a Circular Cylinder Using a Fractional Step Method with Compact Pade Discretization)

  • 정상희;박금성;박원규
    • 한국전산유체공학회지
    • /
    • 제8권3호
    • /
    • pp.50-55
    • /
    • 2003
  • Recent numerical simulation has a tendency to require the higher-order accuracy in time, as well as in space. This tendency is more true in LES and acoustic noise simulation. In the present work, the accuracy of a Fractional step method, which is widely used in LES simulation, has been increased to the fourth-order accurate compact Pade discretization. To validate the present code, the flow-field past a cylinder was simulated and compared with experiment. A good agreement with experiment was achieved.

엔진내부 텀블 유동 형성에 대한 수치해석적 연구 (Numerical Study on the Formation of Tumble Motion in Engine Cylinder)

  • 이병서;이준식;유정열
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.2233-2238
    • /
    • 2003
  • It is well known that organized vortex rotations swirl and tumble greatly affect the mixing, the combustion and heat transfer processes in engine cylinder. We have developed 3 dimensional numerical simulation codes whose predictions make good agreement with the experimental data. Large eddy simulation based on Smagorinsky subgrid scale model was adopted to describe the turbulence of in-cylinder flows. The tumble motions generated by different inclination angles between valve-port and cylinder head have been calculated. The results show that the angles between direction of induced flow and cylinder walls which the flow collides with play a great role in the formation and generation of tumble motions. Therefore, it is inferred that seat angle and inclination angle are important factors of engine design. In addition, the numerical results of different engine speed -1000 rpm and 3000 rpm are very similar in the flow structure.

  • PDF

Simulation of free falling rigid body into water by a stabilized incompressible SPH method

  • Aly, Abdelraheem M.;Asai, Mitsuteru;Sonoda, Yoshimi
    • Ocean Systems Engineering
    • /
    • 제1권3호
    • /
    • pp.207-222
    • /
    • 2011
  • A stabilized incompressible smoothed particles hydrodynamics (ISPH) method is utilized to simulate free falling rigid body into water domain. Both of rigid body and fluid domain are modeled by SPH formulation. The proposed source term in the pressure Poisson equation contains two terms; divergence of velocity and density invariance. The density invariance term is multiplied by a relaxed parameter for stabilization. In addition, large eddy simulation with Smagorinsky model has been introduced to include the eddy viscosity effect. The improved method is applied to simulate both of free falling vessels with different materials and water entry-exit of horizontal circular cylinder. The applicability and efficiency of improved method is tested by the comparisons with reference experimental results.

Fractional Step Method을 이용한 원형 실린더 주위의 난류 유동해석 (Turbulent Flow Analysis of a Circular Cylinder Using a Fractional Step Method)

  • 박금성;박원규
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2003년도 추계 학술대회논문집
    • /
    • pp.152-157
    • /
    • 2003
  • As computer capacity has been progressed continuously, the studies of the flow characteristics have been performing by the numerical methods actively. Recent numerical simulation has a tendency to require the higher-order accuracy in time, as well as in space. This tendency is more true in LES and acoustic noise simulation. In this study, 3-dimensional unsteady Incompressible Navier-Stokes equation was solved by numerical method using the fractional step method with the fourth order compact pade scheme to achieve high accuracy To validate the present code and algorithm, 3D flow-field around a cylinder was simulated. The drag coefficient and lift coefficient were computed and, then, compared with experiment. The present code will be tailored to LES simulation for more accurate turbulent flow analysis.

  • PDF

원형제트의 제어를 통한 보텍스 구조 (Vortical structures from controlled circular jet)

  • 이대일;김정우;최해천
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.2708-2712
    • /
    • 2008
  • The objective of this work is to study various vortical structures from controlled circular jet such as trifurcating and blooming jets. The numerical simulations of flow from a circular jet are carried out at $Re_D=4300$ based on the jet-exit velocity and jet diameter using large eddy simulation with the dynamic Smagorinsky model in a cylindrical coordinate system. The excitation for the controlled jet is achieved by combining axial and helical excitations. The axial velocity controlled by blowing and suction at the jet exit has several peaks in their cycle with respect to ratio of axial to helical excitations. This active control changes the spreading angle and vortical structures in the downstream region.

  • PDF