• Title/Summary/Keyword: Sm-Nd isotope system

Search Result 5, Processing Time 0.015 seconds

Ln-resin and HIBA Method for La-Ce and Sm-Nd Isotope Measurement (La-Ce 및 Sm-Nd 동위원소계 측정을 위한 란탄-레진법과 HIBA(Hydroxy Isobutyric Acid)분리법의 상호비교)

  • Lee, Seung-Gu;Lee, Hyomin;Asahara, Yoshihiro;Lee, Mi-Jeong;Choo, MiKyeong;Lee, SeungRyeol
    • The Journal of the Petrological Society of Korea
    • /
    • v.21 no.4
    • /
    • pp.431-439
    • /
    • 2012
  • A column chemistry is the most useful tools for isolating the elements of interest in isotope geochemistry. Here we introduce the chemical experimental procedure for Sm, Nd, La and Ce separation such as Teflon powder or Ln-resin method using HDEHP of KIGAM, KBSI, KOPRI and ${\alpha}$-HIBA(${\alpha}$-Hydroxy Isobutyric acid) method of Nagoya University, Japan. This technical report will provide an useful information in selecting the experiment method for rare earth element isotope system study such as Sm-Nd and La-Ce isotope system.

Geochemistry and Sm-Nd isotope systematics of Precambrian granitic gneiss and amphibolite core at the Muju area, middle Yeongnam Massif (영남육괴 중부 무주 지역에 위치하는 선캠브리아기 화강편마암 및 앰피볼라이트 시추코아의 Sm-Nd 연대 및 지구화학적 특징)

  • Lee Seung-Gu;Kim Yongje;Kim Kun-Han
    • The Journal of the Petrological Society of Korea
    • /
    • v.14 no.3 s.41
    • /
    • pp.127-140
    • /
    • 2005
  • The Samyuri area of Jeoksang-myeon, Muju-gun at the Middle Yeongnam Massif consists of granitic gneiss, porphyroblastic gneiss and leucocratic gneiss, which correspond to Precambrian Wonnam Series. Here we discuss a geochemical implication of the data based on major element composition, trace element, rare earth element (REE), Sm-Nd and Rb-Sr isotope systematics of the boring cores in the granite gneiss area. The boring cores are granitic gneiss (including biotite gneiss) and amphibolite. The major and trace element compositions of granitic gneiss and amphibolite suggest that the protolith belongs to TTG (Tonalite-Trondhjemite-Granodiorite) and tholeiitic series, respectively. Chondrte-normalized REE patterns vary in LREE, HREE and Eu anomalies. The granitic gneiss and amphibolite have Sm-Nd whole rock age of $2,026{\pm}230(2{\sigma})$ Ma with an initial Nd isotopic ratio of $0.50979{\pm}0.00028(2{\sigma})$ (initial ${\epsilon}_{Nd}=-4.4$), which suggests that the source material was derived from old crustal material. Particularly, this initial ${\epsilon}$ Nd value belongs to the range of the geochemical evolution of Archean basement in North-China Craton, and also corresponds to the initial Nd isotope evolution line by Lee et al. (2005). In addition, chondrite-normalized REE pattern and initial Nd value of amphibolite are very similar to those of juvenile magma in crustal formation process.

Geochemistry of Granitic Rocks Around the Southern Part of the Yangsan Fault (양산단층 남부일원에 분포하는 화강암질암의 지화학적 연구)

  • Hwang Byoung-Hoon;Yang Kyounghee
    • Journal of the Mineralogical Society of Korea
    • /
    • v.18 no.3 s.45
    • /
    • pp.165-181
    • /
    • 2005
  • The granitic rocks distributed in the southern part of the Yangsan Fault are classified into five distinct rock facies based on the field relation, petrography and geochemical characteristics. These five different rock facies can be grouped into two considering their origins. Group I, which reveals various evidences of magma mixing, includes three rock facies of granodiorite, enclave-rich porphyritic granite, and enclave-poor porphyritic granite. Group H intruding Croup I includes equigranular granite and micrographic granite with no evidence of magma mixing. It is suggested that the distinctively different trace element and isotopic chemistries between group I and II, support evolution from the different parental magma. It is suggested that the three rock facies in group I were generated by different degrees of magma mixing in addition to fractionation of plagioclase. MMEs experienced fractionation of biotite. The two facies in group H seem to have been generated from different parent magma from group I and evolved by fractionation of K-feldspar. The Rb-Sr whole-rock ages of the group I rocks yield $59.2\~58.9Ma$, and those of the group II rocks give 53. $3\~51.7Ma$, regardless of their distribution whether they occur in the eastern or western parts of the Yangsan Fault. Based on Sm-Nd isotope compositions, depleted mantle model ages $(T_2DM)$ of the group I range $0.8\~0.9Ga$, while those of the group II$0.6\~0.7Ga$.

Geochemical Implication of Rare Earth Element pattern and Rb-Sr mineral isochron from consituent minerals in the Naedeokri-Nonggeori granite, Yeongnam Massif, Korea (영남육괴 북동부 내덕리-농거리 화강암내 구성광물의 희토류원소 분포도 및 Rb-Sr 광물연대의 지구화학적 의의)

  • Seung-Gu Lee;SeungRyeol Lee
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.36 no.2
    • /
    • pp.125-134
    • /
    • 2023
  • The Naedeokri and Nonggeori granites are early Proterozoic granites of the Taebaek-Sangdong area in the northeastern part of the Yeongnam Massif. In this paper, rare earth elements (REEs) concentrations of the minerals in Naedeokri and Nonggeori granites and Rb-Sr mineral isochron age are reported. Except zircon, the constituent minerals such as mica, feldspar, quartz, and tourmaline show LREE-enriched and HREE-depleted REE patterns with relatively large Eu negative anomaly. However, zircon has geochemical characteristic of LREE- and HREE-enriched REE pattern with large Eu positive anomaly. This pattern suggests that zircon should be hydrothermal zircon due to deuteric hydrothermal alteration. In addition, the Rb-Sr mineral age of Naedeokri granite indicates an age value of 1.814±142(2σ) Ma. The Rb-Sr whole rock age including pervious data of Naedeokri and Nogggeori granite indicates an age value of 1,707±74(2σ) Ma. This value is younger than the Sm-Nd isochron of 1.87 Ga, indicating that the Rb-Sr isotope system may be re-homogenized by hydrothermal alteration during the transition from a magmatic to a hydrothermal system.

Rb-Sr Isotope Geochemistry in Seokmodo Granitoids and Hot Spring, Gangwha: An Application of Sr Isotope for Clarifying the Source of Hot Spring (강화 석모도 화강암류와 온천수의 지구화학: 온천수의 기원규명을 위한 Sr 동위원소의 응용)

  • Lee Seung-Gu;Kim Tong-Kwon;Lee Jin-Soo;Song Yoon-Ho
    • The Journal of the Petrological Society of Korea
    • /
    • v.15 no.2 s.44
    • /
    • pp.60-71
    • /
    • 2006
  • The Seokmodo consists mainly of biotite granite and granodiorite. The biotite granite is divided into the south and the north part by granodiorite. There occurs high temperature hot spring of which temperature is up to $72^{\circ}C$. The Rb-Sr isotopic data for the biotite granite define whole-rock isochron ages of $207{\pm}70$ Ma with initial Sr isotopic ratio of 0.7132 in north part and $132{\pm}50$ Ma with initial Sr isotopic ratio of 0.7125 in south part, suggesting that the magma be derived from the crustal source material. The geochemical characteristics of the biotite granite and hornblende granodiorite indicate that they were crystallized from calc-alkaline under syn-collisional tectonic environment. The samples of hot spring were collected at March 2005 and March 2006. The $^{87}Sr/^{86}Sr$ ratios of hot spring are 0.714507 and 0.714518, respectively and correspond to those oi the granite being occurred at the south part. The similarity of $^{87}Sr/^{86}Sr$ ratios between the granite and hot spring strongly suggests that the hot spring might be derived from the Seokmodo biotite granite.