• Title/Summary/Keyword: Slurry particle size

Search Result 174, Processing Time 0.024 seconds

A Study on the Improvement of ZnO Varistor for Distribution Class Surge Arrester(18kV, 5kA) (배전급 피뢰기(18kV, 5kA)용 산화아연바리스타의 성능향상에 관한 연구)

  • Yoo, Deok-Son;Yoon, Han-Soo;Kim, Suk-Soo;Choi, Yeon-Gyu;Jang, Sung-Do
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.744-746
    • /
    • 2003
  • A ZnO varistor with reference voltage 250V/mm was fabricated through the control of particle size in slurry and the variation of sintering conditions. It was found that to measure the flatness of the V-I characteristic curve in the small-current region and the flatness of the V-I characteristic curve in a large-current region was improved nonlinearity of the fabricated ZnO varistor. According to the IEC 60099-4 was measured the accelerated aging test and high current test of the distribution class surge varistor which is excellent in respect to the property of ZnO varistor.

  • PDF

The Effect of Processing Conditions on the Gradient Pore Structure of Diatomite by Centrifugal Molding (경사 기공 구조를 가지는 규조토의 제조에 원심 분리 성형 공정 변수들이 미치는 영향)

  • Ha, Jang-Hoon;Oh, Eun-Ji;Ahmad, Rizwan;Song, In-Hyuck
    • Journal of Powder Materials
    • /
    • v.19 no.4
    • /
    • pp.304-309
    • /
    • 2012
  • The purpose of our study was to develop the fabrication method of porous diatomite ceramics with a porosity gradient by centrifugal molding. The processing variables of centrifugal molding were derived from Stoke's law of sedimentation, which were the radius of the particles, the acceleration due to centrifugal molding and the dynamic viscosity of the slurry. And these could be controlled by ball-milling conditions, centrifugal conditions, and the addition of methyl cellulose, respectively. The effects of processing conditions on the gradient pore structure of diatomite were investigated by particle size analysis, scanning electron microscope, and mercury porosimeter.

A Feasibility Study on the Utilization of by-Product Sludge Generated from Waste Concrete Recycling Process (폐 콘크리트 재생순환자원 부산물 슬러지의 활용 기초연구)

  • Shin, Hee-young;Ji, Sangwoo;Woo, Jeong-youn;Ahn, Gi-oh;An, Sang-ho
    • Resources Recycling
    • /
    • v.25 no.3
    • /
    • pp.29-36
    • /
    • 2016
  • The characteristics analysis and pH neutralization test were carried out to use of slurry generated from recycling processes of construction wastes. D (5.0) of raw sludge was $42.4{\mu}m$ and over 60 % of sludge distribute under 45 um (-325 mesh). Muscovite and carbonate minerals were main minerals of fine particles, and the portion of carbonate minerals increased as particle size decreased. Although the more heavy metals were observed in the finer particle size, the contents was found to be less than Korean contaminated soil regulation (area 2). The effects of flocculants addition for accelerating solid-liquid separation were negligible because the slurry already contains excess of coagulant added in the waste concrete recycling process. It was difficult to neutralize the sludge supernatant due to high pH (about 12) by adding acids, but the introduction of $CO_2$ decreased the pH to 8.5, The precipitate recovered during $CO_2$ introduction was determined to be $CaCO_3$ with XRD, and it indicates that high pure $CaCO_3$ could be obtained during the process.

Effect of Carbon Fiber Layer on Electrochemical Properties of Activated Carbon Electrode

  • Jong kyu Back;Jihyeon Ryu;Yong-Ho Park;Ick-Jun Kim;Sunhye Yang
    • Journal of Electrochemical Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.184-193
    • /
    • 2023
  • This study investigates the effects of a carbon fiber layer formed on the surface of an etched aluminum current collector on the electrochemical properties of the activated carbon electrodes for an electric double layer capacitor. A particle size analyzer, field-emission SEM, and nitrogen adsorption/desorption isotherm analyzer are employed to analyze the structure of the carbon fiber layer. The electric and electrochemical properties of the activated carbon electrodes using a carbon fiber layer are evaluated using an electrode resistance meter and a charge-discharge tester, respectively. To uniformly coat the surface with carbon fiber, we applied a planetary mill process, adjusted the particle size, and prepared the carbon paste by dispersing in a binder. Subsequently, the carbon paste was coated on the surface of the etched aluminum current collector to form the carbon under layer, after which an activated carbon slurry was coated to form the electrodes. Based on the results, the interface resistance of the EDLC cell made of the current collector with the carbon fiber layer was reduced compared to the cell using the pristine current collector. The interfacial resistance decreased from 0.0143 Ω·cm2 to a maximum of 0.0077 Ω·cm2. And degradation reactions of the activated carbon electrodes are suppressed in the 3.3 V floating test. We infer that it is because the improved electric network of the carbon fiber layer coated on the current collector surface enhanced the electron collection and interfacial diffusion while protecting the surface of the cathode etched aluminum; thereby suppressing the formation of Al-F compounds.

Electrical Properties of Supercapacitor Based on Dispersion Controlled Graphene Oxide According to the Change of Solution State by Washing Process (Washing을 통한 상분리 변화에 따른 그래핀 산화물의 분산도 조절 및 슈퍼커패시터의 특성에 관한 연구)

  • Sul, Ji-Hwan;You, In-kyu;Kang, Seok Hun;Kim, Bit-Na;Kim, In Gyoo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.2
    • /
    • pp.102-106
    • /
    • 2018
  • Recently, there has been an increasing interest in the use of graphene as electrode materials for supercapacitors. In this regard, graphene oxide (GO) films were prepared using GO slurry obtained by dispersing GO powder in deionized (DI) water. The degree of dispersion of GO powder in DI water depends on the concentration of GO slurry, pH, impurity content, GO particle size, types of functional groups contained in GO, and manufacturing method of GO powder. In this study, the dispersivity of the GO powder was improved by adjusting the pH using only DI water (without additives), and a uniform GO film was obtained. The GO film was reduced by exposure to xenon intense pulsed light for a few milliseconds, and the reduced GO film was used as electrodes of a supercapacitor. The supercapacitor was characterized using cyclic voltammetry (CV), charge-discharge cycle, and electrochemical impedance spectroscopy measurements, and the specific capacitance of the supercapacitor was found to be ~140 F/g from the CV data.

A Study on the Preparation of SiC Nano powder from the Si Waste of Solar Cell Industry (태양전지 산업(産業)에서 배출(排出)되는 Si waste로부터 SiC 분말 제조에 관한 연구(硏究))

  • Jang, Eun-Jin;Kim, Young-Hee;Lee, Yoon-Joo;Kim, Soo-Ryong;Kwon, Woo-Teck
    • Resources Recycling
    • /
    • v.19 no.5
    • /
    • pp.44-49
    • /
    • 2010
  • SiC powders have been recovered from silicon-containing waste slurry by carbothermal reduction method with carbon black. Large amount of silicon-containing waste slurry is generated from Solar Cell industry. In an environmental and economic point of view, retrieve of the valuable natural resource from the silicon waste is important. In this study, SiC powder recovered by the reaction ball-milled silicon powder from waste and carbon black at $1350^{\circ}C$ for 3h under vacuum condition. Physical properties of samples have been characterized using SEM, XRD, Particle size analyzer and FT-IR spectroscopy.

Manufacturing of 3N Grade Silica by Thermal Oxidation using the Recovered Silicon from the Diamond Wire Sawing Sludge (다이아몬드 와이어 쏘잉 슬러지로부터 회수(回收)한 실리콘의 열산화(熱酸化)에 의한 3N급(級) 실리카 제조(製造))

  • Jeong, Soon-Taek;Kim, Nam-Chul
    • Resources Recycling
    • /
    • v.22 no.2
    • /
    • pp.37-43
    • /
    • 2013
  • Unlike the conventional slurry type wire sawing, the diamond wire sawing method adopts diamond plated wire as sawing media instead of slurry consisted of both silicon carbide and oil. Wafering with diamond plated wire leaves solid element of the sludge mostly made up of silicon, and it is not difficult to recover 95% or more of silicon by a simple separation process of oil from the sludge. In this study, silicon was recovered from the sludge by drying process and organic and metal impurities were removed by sintering process. As result 3N grade silica was obtained successfully by thermal processing utilized the fact that the recovered silicon readily combines with oxygen due to fine particle size.

Preparation and Characterization of Ceria Stabilized Tetragonal Zirconia Polycrystals(I) : Effect of CeO2 Contents on the Mechanical Properties of Ce-TZP (세리아 안정화 지르코니아의 제조 및 특성(I) : CeO2첨가량 변화에 따른 Ce-TZP의 기계적 특성)

  • Jung, Seung-Hwa;Kang, Jong-Bong
    • Korean Journal of Materials Research
    • /
    • v.20 no.7
    • /
    • pp.379-384
    • /
    • 2010
  • The usual ceramic process of mixing and milling in state of oxides $ZrO_2$ and $CeO_2$ was adopted in this study in a wet process to manufacture Ce-TZP. $CeO_2$-$ZrO_2$ ceramics containing 8~20 mol% $CeO_2$ were made by heat treatment at $1250\sim1500^{\circ}C$ for 5hr. The maximum dispersion point of every slurry manufactured with a mixture of $ZrO_2$ and $CeO_2$ was neat at pH10. A stable slurry with average particle size of 90 nm can be manufactured when it is dispersed with the use of ammonia water and polycarboxylic acid ammonium. The sintered Ce-TZP ceramics manufactured with the addition of $CeO_2$ in a concentration of less than 10 mol% progressed to the fracture of the specimen due to the existence of a monoclinic phase of more than 30% at room temperature. More than 99% of the tetragonal phase was created for the sintered body with the addition of $CeO_2$ beyond 18 mol%, but the degradation of the mechanical properties on the entire specimen was brought about due to the $CeO_2$ existing in a percentage above 3%. Consequently, the optimal Ce-TZP level combined in the oxide state was identified to be 16 mol% of $CeO_2$ contents.

Growth of Nanocrystalline Diamond Films on Poly Silicon (폴리 실리콘 위에서 나노결정질 다이아몬드 박막 성장)

  • Kim, Sun Tae;Kang, Chan Hyoung
    • Journal of Surface Science and Engineering
    • /
    • v.50 no.5
    • /
    • pp.352-359
    • /
    • 2017
  • The growth of nanocrystalline diamond films on a p-type poly silicon substrate was studied using microwave plasma chemical vapor deposition method. A 6 mm thick poly silicon plate was mirror polished and scratched in an ultrasonic bath containing slurries made of 30 cc ethanol and 1 gram of diamond powders having different sizes between 5 and 200 nm. Upon diamond deposition, the specimen scratched in a slurry with the smallest size of diamond powder exhibited the highest diamond particle density and, in turn, fastest diamond film growth rate. Diamond deposition was carried out applying different DC bias voltages (0, -50, -100, -150, -200 V) to the substrate. In the early stage of diamond deposition up to 2 h, the effect of voltage bias was not prominent probably because the diamond nucleation was retarded by ion bombardment onto the substrate. After 4 h of deposition, the film growth rate increased with the modest bias of -100 V and -150 V. With a bigger bias condition(-200 V), the growth rate decreased possibly due to the excessive ion bombardment on the substrate. The film grown under -150V bias exhibited the lowest contact angle and the highest surface roughness, which implied the most hydrophilic surface among the prepared samples. The film growth rate increased with the apparent activation energy of 21.04 kJ/mol as the deposition temperature increased in the range of $300{\sim}600^{\circ}C$.

Fabrication and Properties of Reaction Bonded SiC Hot Gas Filter Using Si Melt Infiltration Method (용융 Si 침윤방법에 의한 반응소결 탄화규소 고온가스 필터의 제조 및 특성)

  • 황성식;김태우
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.9
    • /
    • pp.891-896
    • /
    • 2003
  • Novel fabrication technique was developed for high strength Reaction-Bonded SiC (RBSC) hot gas filter for use in IGCC (Integrated Gasification Combined Cycle) system. The room and high temperature fracture strengths for Si-melt infiltrated reaction-bonded SiC were 50-123, and 60-66 MPa, respectively. The average pore size was 60-70 $\mu\textrm{m}$ and the porosity was about 34 vol%. RBSC infiltrated with molten silicon showed improved fracture strength at high temperature, as compared to that of clay-bonded SiC, due to SiC/Si phase present within SiC phase. The thickness for SiC/Si phase was increased with increasing powder particle size of SiC from 10 to 34 $\mu\textrm{m}$. Pressure drop with dust particles showed similar response as compared to that for Schumacher type 20 filter. The filter fabricated in the present study showed good performance in that the filtered powder size was reduced drastically to below 1 $\mu\textrm{m}$ within 4 min.