• Title/Summary/Keyword: Slurry ice

Search Result 92, Processing Time 0.028 seconds

Storage Effects of Seawater and Tapwater Ice For Freshness of Mackerel(Scomber japonicus) (고등어 신선도 유지를 위한 해수와 담수 얼음의 저장효과)

  • Lee, Nahm-Gull
    • Journal of the Korean Applied Science and Technology
    • /
    • v.37 no.4
    • /
    • pp.860-869
    • /
    • 2020
  • This study was conducted to see the effect of maintaining the freshness of mackerel caught offshore, through the chemical analysis method in seawater slurry ice(SS), sea water cube ice(SC), tap water slurry ice(TS) and tap water cube ice(TC). Among each ice mass, bacteria were below the drinking water standard and ammonia nitrogen was over the threshold of 11 mg/l in sea water. The turbidity of the seawater was severe compared to that of fresh water. Proximate compositions showed 72.7% moisture content, 20.5% protein, 5.25% lipid, and 1.3% ash content. Sea slurry ice was kept low in pH compared with fresh water ice. VBN increases were inhibited in all reservoirs at the beginning of the storage. Generally Sea ice was kept lower VBN value than the fresh water ice.

Growth of Ice Crystal with Concentration of Surfactant in Water Solution (계면활성제 농도가 빙결정의 입자크기에 미치는 영향)

  • ;稻葉英男
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.26 no.2
    • /
    • pp.240-247
    • /
    • 2002
  • Recently, a thermal energy storage system has been developed actively fur the purpose of saving energy and reducing the peak electrical demand. Especially, ice slurry is a promising working fluid for low temperature energy storage systems. A flow of ice crystals has a large cooling capacity as a result of the involvement of latent heat. However, there are still problems related to the recrystallization of ice crystals for realizing long term storage and long distance transportation. To find improvements fur this, a method for the creation of ice crystals resistant to recrystallization has been proposed and researched by the use of an antifreeze protein (AFP) solution etc. In the present study, it has been investigated the growth of ice crystal in several kinds of water solution added non-ionic surfactant. The results shows that size of ice crystal was smaller with increasing in added surfactant. And ice crystal was not increased with added surfactant.

Flow pattern analysis and a study on formation of slurry ice in the reversing flow (역전 유동층 내의 유동해석 및 슬러리아이스 생성에 관한 연구)

  • Oh, Cheol;Choi, Young-Gyu
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2011.06a
    • /
    • pp.202-202
    • /
    • 2011
  • Thermal energy storage(TES) cooling system using cheaper electricity of off-peak time has been applied to relief a significant portion of the peak demand of electricity during the daytime in summer. Slurry ice type thermal energy storage cooling system is one kind of more efficient ice-thermal energy storage cooling system than Ice-on-Coil type or Encapsulated type TES cooling system, even though, which are more popular TES system. This study is experimented to observe flow pattern and formation of slurry ice in reversing flow to improve efficiency of heat transfer between fluid and freezing tube.

  • PDF

PIV Measurement on Ice Slurry Pipe Flow (PIV에 의한 원관내 Ice Slurry의 유동계측)

  • Hwang Tae Gyu;Hong Seong Dae;Park Seong Ryong;Baek Tae Sil;Doh Deog Hee
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.98-101
    • /
    • 2004
  • Experimental studies were reported on the characteristics of flows in a circular pipe in which ice slurry is flowing. This was mainly due to deficiency of conventional measurement techniques. In this report, the flow characteristics are quantitatively investigated by the use of PIV technique concerning the Ice Packing Factor(IPF) and the power changes of pump motor. It was experimentally verified that the power loss does not increase any more at a certain IPF value.

  • PDF

Experimental Study on Transformation of IPF and Pressure Drop in Branches with Ice Slurry (아이스슬러리의 분기관내 압력손실과 IPF 변화에 관한 실험적 연구)

  • 박기원;최현웅;노건상;정재천
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.2
    • /
    • pp.272-279
    • /
    • 2003
  • This study aimed to understand the effects of transporting ice slurry Particles through Pipes with branches. The experimental apparatus was constructed as ice slurry mixing tank. vortex pump, manometers for differential pressure measuring. IPF(ice packing factor) measuring instruments and branches as test sections. The experiments were carried out under various conditions. with concentration of water solution ranging between 0∼20wt% and velocity of water solution at the entry ranging between 1.5∼2.5m/s. The differential Pressure and IPF between the pipe entry and exit were measured. and flowing form was checked throughout the experiment. The pressure loss in 3d branches appeared compared with 6d branches so that it was very high. In the pressure loss of the inside and outside of branches. 6d branches was showed the difference. but was agreed in 3d branches The pressure loss according to concentration of water solution, low value appeared at 10wt% in 6d branches, at 20wt% in 3d branches. The pressure loss according to velocity, did not show large difference. The change of IPF at outlet, appeared +15∼-25% in 6d branches and 0∼-20% in 3d branches. The difference of IPF at the inside and outside of branches. appeared 10∼15% in 6d branches and maximum 5% in 3d branches.

A Study on Transport and Heat Utilization of Ice Slurries (아이스 슬러리의 수송 및 냉열이용에 관한 연구)

  • 길복임;이윤표;정동주;조봉현;최은수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.11
    • /
    • pp.1065-1071
    • /
    • 2001
  • To investigate hydraulic and thermal characteristics of ice slurries in a circular tube, ice slurries were tested in a flow loop with a constant heat flux test section, for ranges of flow velocity, ice fraction and heat flux. Heat transfer coefficients and friction factors of ice slurries were calculated by measuring the outer wall temperatures of the test section and the pressure drops over the test section. Heat transfer coefficients of ice slurries were 9% higher than the heat transfer coefficients expected by Petukhov. Friction factors were about 4% lower than the friction factors expected by Petukhov. The effective thermal capacity of ice slurry with 12.8% ice fraction, was found to be about 3 times higher than the thermal capacity of water.

  • PDF

Influence of Control Pressure and Concentration of Water Solution at Continuous Ice Making in a Tube (제어압력 및 수용액의 농도가 관내 연속제빙에 미치는 영향)

  • ;;Hideo Inaba;Akihiko Horibe;Naoto haruki;Hidetoshi Miura
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.12
    • /
    • pp.1236-1244
    • /
    • 2001
  • In the present study, the possibility of continuous slurry ice making using flowing water solution in a cooled tube has been investigated. The experiments were carried out at various concentration and velocity of water solution, temperature of cooled tube wall, and control pressure in a tube. As a result, four types of operating conditions, that is super-cooling, continuous ice making, intermittent ice making and ice blockage, were classified. And it was found that the critical condition for the continuous ice making was acquired as a function of these experimental parameters.

  • PDF

Characteristics of the Ice Slurry Transportation System for District Cooling Depending on the Transportation Lines (지역냉방용 아이스슬러리 수송시스템의 배관방식에 따른 특성)

  • Lee Yoon-Pyo;Chung Jae-Dong;Yoon Seok-Mann
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.7
    • /
    • pp.571-577
    • /
    • 2006
  • The characteristics of ice packing factor (IPF) at the ice slurry system using one line type are compared with the system using two lines type. The installation space for one transporting line is saved at the one line system. For the one line type, the ice packing factor is reduced along the downstream, but for the two lines type, the ice packing factor is fixed. For the one line system, mass flow rate in the main line is fixed along the down-stream, but for two lines system, the mass flow rate in the main line is reduced along the downstream. For one line system, along the down stream after IPF=0, the temperature at the main steam is increased, and the extracted mass flow is increased. The initial IPF, at which the IPF is not arrived at zero upto the final node, is proposed for the B area.

PIV Measurement on Ice Slurry Pipe Flow (PIV에 의한 원관내 Ice Slurry의 유동계측)

  • Doh Deog Hee;Kim Dong Hyuk;Oh Cheol;Hong Seong Dae;Park Seong Ryong;Hwang Tae Gyu
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.2
    • /
    • pp.177-184
    • /
    • 2005
  • Experimental studies on the characteristics of ice slurry flows in a circular pipe is rare due to the deficiency of conventional measurement techniques. In this report the flow characteristics are quantitatively investigated by the use of PIV technique concerning the Ice Packing Factor(IPF) and the power changes of pump motor It was experimentally verified that the power loss does not increase any more at a certain IPF value.

Flow Analysis and an Experimental Study on Formation of Slurry Ice in the Reversing Flow Layer (역전 유동층 내의 유동해석 및 슬러리아이스 생성에 관한 연구)

  • Oh, Cheol;Choi, Young-Gyu
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.4
    • /
    • pp.421-428
    • /
    • 2011
  • Thermal energy storage(TES) cooling system using cheaper electricity of off-peak time has been applied to relieve a significant portion of the peak demand of electricity during the daytime in summer. Slurry ice type thermal energy storage cooling system is one kind of more efficient ice-thermal energy storage cooling system than Ice-on-Coil type or Encapsulated type TES cooling system, even though, which are more popular TES system. This experimental study was carried out to observe flow pattern and formation of slurry ice in reversing flow layer to improve efficiency of heat transfer between fluid and freezing tube and to disturb ice adhesion on tube surface. The reversing flow layer was made by using reversing materials in heat exchanger section(test section) to disturb ice adhesion. At this experiment, styrofoam balls and poly propylene balls were used as reversing materials, and a 20wt% solution of ethylene glycol was used as reversing flow layer. The experimental apparatus was constructed of the test section for making/storing slurry ice, the brine tank, pumps for circulating of a 20wt% solution of ethylene glycol and brine, a flow-meter, a data logger for measuring the temperature. The experiments were carried out under various conditions, with volumetric flow rate, ball filling rate and air filling rate.