• 제목/요약/키워드: Slurry flow

검색결과 217건 처리시간 0.022초

지역냉방용 직접순환식 아이스슬러리 시스템의 현장적용 사례 (A Field Application Case of Direct Ice Slurry Transporting System for District Cooling)

  • 유호선;이상훈;이윤표
    • 설비공학논문집
    • /
    • 제21권9호
    • /
    • pp.496-504
    • /
    • 2009
  • In order to investigate the feasibility of a direct ice slurry transporting system for the purpose of district cooling, a case study of field application is performed. The research aims include the field measurement of ice packing factor, the performance of coldness delivery, and the branching characteristics of ice slurry. Two representative types of pipe branch are dealt with in this work. For the slurry flow with ice volume fraction of 0.16 or less, the pipe blocking due to aggregation is not observed. Based on the time-wise variation of temperature in the storage tank, a calculating method of ice packing factor is newly developed, which seems to be useful when the brine concentration is unknown. It is confirmed that the mass flow rate of ice slurry per unit cooling load is markedly reduced with increasing the ice content. The pumping power also decreases, but remains unchanged for high ice fractions. The distribution of ice particle before and after branching shows a good uniformity within the range of 5% difference, but yields a unique trend depending on the flow rate.

아이스 슬러리의 원형관내 대류열전달에 관한 연구 (Convective Heat Transfer of Using an Ice Slurry in n circular pipe)

  • 정동주;최은수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집B
    • /
    • pp.130-135
    • /
    • 2000
  • To enhance heat transfer characteristics of water, fine ice was added to it. The convective heat transfer characteristics of the ice slurry were investigated in a flow loop with a constant heat flux test section. The Nusselt number and Fanning friction coefficient of water flow were found to be similar to the expected curve by Petukhov. The Nusselt number of the ice sin flow was higher than the Nusselt number of water. Effective thermal capacity of the 10.84% ice slurry was found to have 2.39 times of the thermal capacity of water.

  • PDF

배관 내 밸브 주위의 아이스슬러리의 유동현상 및 압력강하특성에 관한 연구 (An experimental study on ice slurry fluid and pressure drop characteristics in along a horizontal circular tube around the valve)

  • 오철;문성배;손용길
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제30권3호
    • /
    • pp.382-388
    • /
    • 2006
  • This study experimented to understand the effect of transporting ice slurry through in pipe with valve. And at this experiment it used ethylene glycol-water solution and a concentration is 30wt%. The experimental apparatus was constructed of ice slurry generation tank, turbo flow meter, manometers for differential pressure measuring, PIV system for flow pattern measuring. illumination and along a horizontal circular tube with valve as test section. The experiments were carried out under various conditions, with velocity of fluid at the entry ranging from 0.5 to 1.5 m/s and concentration of IPF is 30%. Also valve open rate is 50%, 75%, 100%.

특수배관에서의 아이스슬러리 유동특성 (Flow Characteristics of Ice Slurry in Special Pipings)

  • 이동원;윤찬일;임효묵
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.401-402
    • /
    • 2002
  • The flow characteristics of ice slurry which was made from $6.5{\%}$ ethylene glycol-water solution flowing in the special pipings including the enlargement, the contraction and the orifice were experimentally investigated. The flow patterns and the pressure drops were measured in acrylic pipes when the fraction of ice were varied from $0\;to\;30{\%}$. The pressure drop behavior of the contraction and the orifice appears to be similar to that of the elbow pipe, since these piping may provide similar frictional resistance to the elbow. In the mean while, the pressure drop increased unexpectedly high with the Ice fraction in the enlargement pipe. It seems that the onset of sharp increase in the pressure drop depends on the flowing time as well as the ice fraction and the flow rate.

  • PDF

준설토의 관로유송 (Pipeline Transport of Dredged Soils)

  • 유동훈;김성오;선우중호
    • 한국해안해양공학회지
    • /
    • 제8권1호
    • /
    • pp.114-122
    • /
    • 1996
  • 간척지 매립에 있어서 최근에는 토사를 해저에서 준설하여 파이프라인을 통해 유송시켜 매립시키는 방법이 많이 쓰여지고 있다. 이러한 경우 토사와 혼합된 유체는 slurry fluid의 성질을 지닌다. slurry fluid는 점성도가 독특한 양상을 보이기 때문에 준설토 유송의 관련수치 산정에는 slurry flow 특성을 반영한 관마찰계수 산정식을 사용해야 한다. 준설토를 함유한 slurry fluid는 주로 함유된 입자의 크기에 따라 Newtonian fluid 또는 non-Newtonian fluid 특성을 갖는데, 본 연구에서는 각 특성조건별로 관마찰계수 산정식을 지수함수 형태로 제시하였으며, 이를 이용하여 준설토 유송을 위한 용량산정에 있어 펌프동력 뿐만 아니라 관경 및 유량에 대하여도 양해법 형태의 산정식을 개발하였다.

  • PDF

역전 유동층을 이용한 관군 내에서의 슬러리아이스 생성에 관한 연구 (A Study on Formation of Slurry Ice by using the Reversing Flow in a Bundle of Tube)

  • 오철;최영규
    • 한국항해항만학회지
    • /
    • 제35권5호
    • /
    • pp.365-370
    • /
    • 2011
  • 최근 지구 온난화와 더불어 급격한 기후 변화 등으로 여름철 주간 냉방 수요가 급격히 증가하고 있다. 이에 따른 전력 수요량 또한 증가하고 있다. 이런 이유로 세계적으로 에너지 이용 효율 향상에 대한 관심이 높아지고 있고, 최근 국내 및 국외의 축냉시스템을 이용한 주간 전력 피크값을 최소화 하는 연구개발과 실제 적용 사례가 늘어나고 있다. 빙축열시스템의 경우 그 경제적 효과가 높아 그 관심이 높아지고 있는 추세이다. 축냉시스템은 주간 냉방에 사용하는 냉열을 야간에 만들어 탱크에 저장해 두었다가 그것을 낮에 이용함으로써, 갑작스런 부하 증가에 적절히 대응할 수 있는 등 여러 가지 장점을 갖고 있다. 본 실험에서는 슬러리아이스 생성을 위해 냉각표면에서 생성된 슬러리아이스를 분리시키기 위해 유체보다 밀도가 낮은 역전유동 물질을 삽입하여 역전 유동층을 형성하였으며, 역전유동층의 유동에 의해 관군으로 구성되어 있는 냉각튜브 표면에 빙부착이 심화되기 전에 얼음 입자를 분리시켜 수 내지 수십 미크론 단위의 슬러리아이스를 생성하도록 하였다.

[Retraction]Size measurement and characterization of ceria nanoparticles using asymmetrical flow field-flow fractionation (AsFlFFF)

  • Kim, Kihyun;Choi, Seong-Ho;Lee, Seungho;Kim, Woonjung
    • 분석과학
    • /
    • 제32권5호
    • /
    • pp.173-184
    • /
    • 2019
  • As the size of semiconductors becomes smaller, it is necessary to perform high precision polishing of nanoscale. Ceria, which is generally used as an abrasive, is widely used because of its uniform quality, but its stability is not high because it has a high molecular weight and causes agglomeration and rapid precipitation. Such agglomeration and precipitation causes scratches in the polishing process. Therefore, it is important to accurately analyze the size distribution of ceria particles. In this study, a study was conducted to select dispersants useful for preventing coagulation and sedimentation of ceria. First, a dispersant was synthesized and a ceria slurry was prepared. The defoamer selection experiment was performed in order to remove the air bubbles which may occur in the production of ceria slurry. Dynamic light scattering (DLS) and asymmetrical flow field-flow fractionation (AsFlFFF) were used to determine the size distribution of ceria particles in the slurry. AsFlFFF is a technique for separating nanoparticles based on sequential elution of samples as in chromatography, and is a useful technique for determining the particle size distribution of nanoparticle samples. AsFlFFF was able to confirm the presence of a little quantities of large particles in the vicinity of 300 nm, which DLS can not detect, besides the main distribution in the range of 60-80 nm. AsFlFFF showed better accuracy and precision than DLS for particle size analysis of a little quantities of large particles such as ceria slurry treated in this study.

미래의 불확실한 냉방부하에 대한 아이스슬러리를 이용한 지역냉방시스템 및 경제성 평가 (A District Cooling System using Ice Slurry for the Uncertain Cooling Load of the Future and its Economic Evaluation)

  • 이윤표;안영환;윤석만
    • 설비공학논문집
    • /
    • 제18권10호
    • /
    • pp.776-782
    • /
    • 2006
  • A new district cooling system using ice slurry for the uncertain cooling load of the future is presented. The chilled water produced by the absorption chillers is used for the base cooling load. The temperature of the chilled water is reduced by mixing of ice slurry depending on increasing of the cooling load. Finally, IF of the ice slurry is increased up to 10% at the peak load. The transporting mass flow rate is decreased down to 44.7%, and the diameter of the main pipe is decreased down to 66.7%, but the diameter of the branched pipe is designed as the same size of the chilled water.

역전 유동층 내의 유동해석 및 슬러리아이스 생성에 관한 연구 (Flow pattern analysis and a study on formation of slurry ice in the reversing flow)

  • 오철;최영규
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2011년도 전기공동학술대회 논문집
    • /
    • pp.202-202
    • /
    • 2011
  • Thermal energy storage(TES) cooling system using cheaper electricity of off-peak time has been applied to relief a significant portion of the peak demand of electricity during the daytime in summer. Slurry ice type thermal energy storage cooling system is one kind of more efficient ice-thermal energy storage cooling system than Ice-on-Coil type or Encapsulated type TES cooling system, even though, which are more popular TES system. This study is experimented to observe flow pattern and formation of slurry ice in reversing flow to improve efficiency of heat transfer between fluid and freezing tube.

  • PDF

실험실적 규모의 분무흡수건조반응기의 배출가스 중 아황산가스 처리성능 연구 (Flue Gas Sulfur Dioxide Removal Performance of a Bench-Scale Spray Absorption/Drying Reactor)

  • 동종인;구우회;임대현
    • 한국대기환경학회지
    • /
    • 제12권4호
    • /
    • pp.449-457
    • /
    • 1996
  • The main purpose of this study was to investigate sulfur dioxide removal performance of flue gas desulfurization system utilizing a Spray Absorption/Drying Reactor. In this system, the size of droplets was considered the most significant factor and tested using a PDA system. Lime slurry flow rate, operating temperature, calcium/sulfur (Ca/S) ratio and applied air pressure were selected as major operation variables and tested/analyzed in terms of system performance. The results are as follows. 1. The $SO_2$ removal efficiencies were 49%, 74%, 85% for Ca$(OH)_2$ slurry flow rate of 10, 20, 30 ml/min, which implies that the increase of slurry flow rate improves removal efficiency. The optimum slurry flow rate in this study was, however, considered 20 ml/min because of constraints of system troubles and absorbent utilization. 2. As Ca/S ratio increased, $SO_2$ removal efficiency was observed to increase. 3. As air pressure, at the atomizing nozzole, increased from 3 to 5 $kg/cm^2, SO_2$ removal efficiency increased from 74% to 80%, because of droplet size reduction due to pressure increase during atomizing process and the increase of surface area, helping mass transfer between gas and liquid phase.

  • PDF