• Title/Summary/Keyword: Slump-flow

Search Result 316, Processing Time 0.028 seconds

A Study on the Mechanical Characteristics of the replaced concrete by the Waste Glass Powder (폐류리분미를 사용한 콘크리트의 역학적 특성에 관한 연구)

  • 김명재;송창영;정호철;설광욱;부척량
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.247-253
    • /
    • 1997
  • This study performed the experimental research comparing mechanical characteristics of the concrete replaced by the waste glass powder with the non-replaced concrete. The experimental parameters are kinds of the waste glass powder and replacement rate of the waste glass powder on the cement. As as result, the slump value, the flow value and the amount of air were decreased as the waste glass powder replacement rate increased, and the strength was increased when the waste glass powder replacement rate is 5%~15%.

  • PDF

Durability Characteristics of Blended Cement Mortars (혼합 시멘트 모르타르의 내구특성)

  • 원종필;이찬민;박찬기
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.3
    • /
    • pp.41-49
    • /
    • 2003
  • In this study, durability performance of blended cement mortars is evaluated when various mineral admixtures are used with the cement. A comprehensive evaluation of the effects of mineral admixtures on the mortar performance was made. The properties of fresh and hardened blended mortars investigated include slump flow and compressive strength. The durability characteristics of cement materials incorporating the mineral admixtures under various physical and chemical causes of deterioration was investigated. The laboratory test results indicate that mechanical and durability properties of blended cement mortars have superior performance rather than ordinary cement mortars.

Comparative Study on the Underwater Concrete Properties using various Anti-washout Admixtures (수중불분리성 혼화재의 종류에 따른 콘크리트의 성능 비교연구)

  • 백승준;박희민;성상래;윤영수;이승훈
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.10a
    • /
    • pp.366-372
    • /
    • 1996
  • This paper persents the characteristics and properties of the five domestic and foreign-made anti-washout admixtures commercially available in Korea. These admixtures have been analysed by experiments to compare among others specifically on the following items : air content, slump-flow, hardening time, pH, filling condition, turbidity, content of chloride, compressive strength of underwater concrete and ratio of ambient / underwater concrete compressive strength. The mix design for comparison has been set according to the Japanese practicesince there is still no guideline concerning underwater concrete available domestically.

  • PDF

A study regarding a quality change through four 2000 and 2008 city ready mixed concrete shipment present situations (2000년과 2008년 4대 도시 레미콘 출하 현황(現況)을 통한 품질 변화(變化)에 관(關)한연구(硏究))

  • Cho, Do-Young;Kim, Jong-Baek;Kim, Gyu-Yong;Kim, Moo-Han
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2009.05c
    • /
    • pp.65-68
    • /
    • 2009
  • Recently, the knowledge access about concrete might be 2 methods. One is approach about advanced and new technical development through the institute journal, the other is construction technology which is using at construction fields. However, there is no research for the interrelationship between them. So, this paper investigates the demands on construction fields at the ready mixed concrete plants on the 4 cities, the characteristics of the products like the maximum size of coarse aggregate and slump, and the extension of market on the high strength and flow ability concrete in 2000 and 2008. Moreover, this study would like to propose the investigation about diversification of construction materials for the fine construction cultures and development of the ready mixed concrete to the engineers at the construction fields.

  • PDF

Influence of Over-Added AE Water Reducing Agent on Physical Properties of the Concrete (AE 감수제 과다첨가가 콘크리트의 물리적 특성에 미치는 영향)

  • Han, Cheon-Goo;Han, Min-Cheol;Lee, Dong-Gyu
    • Journal of the Korea Institute of Building Construction
    • /
    • v.8 no.1
    • /
    • pp.91-96
    • /
    • 2008
  • This study is to investigate the influence of the over-added chemical agents, such as water reducing agent(WRA) and AE water reducing agent(AEWRA), on the physical properties of concrete to estimate the degree of damage due to over-added chemical agents. For the fresh concrete, slump and slump flow increased with the increase of WRA and AEWRA as expected. Material segregation phenomenon was observed with the over dosage of lignin based AEWRA about 4 times larger than recommended dosage. The over dosage of AE water reducing agent about 4 times larger than recommended dosage resulted in an increase of air contents remarkably. The set retardation occurred greatly with the increase of AEWRA and WRA. For the properties of the hardened concrete corresponding to the over dosage of AEWRA, it is found that compressive strength of over added AEWRA and WRA concrete are much smaller than those of base and recommended dosage concrete proportionally due to associated increasing air content.

A Study on the Choice of Optimal Mixtures and Sensibility Properties of High Strength Concrete and Mass Concrete to apply the High Rising Building (초고층구조물에 적용하기 위한 고강도콘크리트 및 매스콘크리트의 최적배합선정 및 민감도특성에 관한 연구)

  • Lee, Sang-Soo;Song, Ha-Young;Kim, Eul-Yong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.5 no.2 s.16
    • /
    • pp.153-159
    • /
    • 2005
  • This study is to choose the optimal mixture and to analyze the sensibility properties of High strength concrete and mass concrete to apply the high rising building. The main experimental variables were water/binder ratio $39\%,\;33\%,\;35\%\;and\;37\%$, replacement ratio of fly ash $5\%,\;10\%\;and\;15\%$, in the high strength concrete and water/binder ratio $39\%,\;41\%\;and\;43\%$, replacement ratio of fly ash $10\%,\;20\%\;and\;30\%$, in the man concrete. According to the test results, the principal conclusions are summarized as follows. 1) The slump(or slump flow) and air content of fresh concrete were found to be the highest in the elapsed time 30 minutes. 2) The optimal mixture conditions are W/B $40\%$, FA $25\%$ in the mass concrete and W/B $33.4\%$, FA $15\%$ in the high strength concrete. 3) The ranges of sensibility are satisfied in the moisture content ${\pm}l\%\;and\;S/a\;{\pm}2\%$.

The Properties of Early Strength of Concrete Containing Slag and Fly-ash for In-situ Application (현장 적용을 위한 3성분계 콘크리트의 조기강도 특성)

  • Jung Chul-Hee;Kim Kyoung-Min;Lee Jin-Woo;Bae Yeon Ki;Lee Jae-Sam
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.497-500
    • /
    • 2005
  • This study was performed to evaluate the characteristics which are slump, air content and time of set in fresh concrete and compressive strength of hardened concrete containing slag powder and fly-ash. Replacement rate of FA is fixed on 10$\%$ and replacement rate of slag powder are 0$\%$, 20$\%$ and 30$\%$. Also AE water-reducing agents(standard type, accelerating type) are used. The results were as follows. (1)Slump flow of concrete using AE water-reducing agents is similar. Flowability is incresed when replacement rate of slag powder is increased due to slag powder's ball bearing reaction.(2)Time of set of concrete using accelerating type agent is more faster than that of concrete using standard type agent because of ettringite generation that promote setting.(3)Early strength of three-component concrete using accelerating type agent is higher than that using standard type agent. Therefore cumulative pore is reduced due to ettringite

  • PDF

Performance characteristics of dredged silt and high-performance lightweight aggregate concrete

  • Wang, H.Y.;Sheen, Y.N.;Hung, M.F.
    • Computers and Concrete
    • /
    • v.7 no.1
    • /
    • pp.53-62
    • /
    • 2010
  • Dredged silt from reservoirs in southern Taiwan was sintered to make lightweight aggregates (LWA), which were then used to produce high-performance lightweight aggregate concrete (HPLWC). The HPLWC was manufactured using different amounts of mixing water (140, 150, and 160 $kg/m^3$) and LWA of different particle densities (700, 1100, and 1500 $kg/m^3$) at different W/b ratios (0.28, 0.32, and 0.4). Results show that the lightweight aggregates of dredged silt taken in southern Taiwan perform better than the general lightweight aggregates. In addition, the HPLWC possessed high workability with a slump of 230-270 mm, and a slump flow of 450-610 mm, high compressive strength of over 40 MPa after 28 days of curing, good strength efficiency of cement exceeding $0.1MPa/kg/m^3$, low thermal conductivity of 0.4-0.8 $kcal/mh^{\circ}C$, shrinkage of less than $4.8{\times}10^{-4}$, and high electrical resistivity of above 40 $k{\Omega}-cm$. The above findings prove that HPLWC made from dredged silt can help enhance durability of concrete and provide and an ecological alternative use of dredged silt.

Fresh and hardened properties of rubberized concrete using fine rubber and silpozz

  • Padhi, S.;Panda, K.C.
    • Advances in concrete construction
    • /
    • v.4 no.1
    • /
    • pp.49-69
    • /
    • 2016
  • This work investigates the mechanical properties of conventional concrete (CC) and self compacting concrete (SCC) using fine rubber and silpozz were accompanied by a comparative study between conventional rubberized concrete (CRC) and self compacting rubberized concrete (SCRC). Fine rubber (FR) from scrap tires has replaced the fine aggregate (FA) and Silpozz has been used as a replacement of cement at the proportions of 5, 10 and 15%. Silpozz as a partial replacement of cement in addition of superplasticiser (SP) increases the strength of concrete. Fresh concrete properties such as slump test, compaction factor test for CRC, whereas for SCRC slump flow, $T_{500}$, V-funnel, L-box, U-box, J-ring tests were conducted along with the hardened properties tests like compressive, split tensile and flexural strength test at 7, 28 and 90 days of curing. The durability and microstructural behavior for both CRC and SCRC were investigated. FR used in the present study is 4.75 mm passing with fineness modulus 4.74.M30 grade concrete is used with a mix proportion of 1:1.44:2.91 and w/c ratio as 0.43. The results indicate that as FR quantity increases, workability of both CRC and SCRC decreases. The results also show that the replacement of natural fine aggregate (NFA) with FR particles decreases the compressive strength with the increase of flexural strength observed upto 5% replacement of FR. Also replacement of cement with silpozz resulted enhancement of strength in SCRC.

Effect of metakaolin on the properties of conventional and self compacting concrete

  • Lenka, S.;Panda, K.C.
    • Advances in concrete construction
    • /
    • v.5 no.1
    • /
    • pp.31-48
    • /
    • 2017
  • Supplementary cementitious materials (SCM) have turned out to be a vital portion of extraordinary strength and performance concrete. Metakaolin (MK) is one of SCM material is acquired by calcinations of kaolinite. Universally utilised as pozzolanic material in concrete to enhance mechanical and durability properties. This study investigates the fresh and hardened properties of conventional concrete (CC) and self compacting concrete (SCC) by partially replacing cement with MK in diverse percentages. In CC and SCC, partial replacement of cement with MK varies from 5-20%. Fresh concrete properties of CC are conducted by slump test and compaction factor tests and for SCC, slump flow, T500, J-Ring, L-Box, V-Funnel and U-Box tests. Hardened concrete characteristics are investigated by compressive, split tensile and flexural strengths at age of 7, 28 and 90 days of curing under water. Carbonation depth, water absorption and density of MK based CC and SCC was also computed. Fresh concrete test results indicated that increase in MK replacement increases workability of concrete in a constant w/b ratio. Also, outcomes reveal that concrete integrating MK had greater compressive, flexural and split tensile strengths. Optimum replacement level of MK for cement was 10%, which increased mechanical properties and robustness properties of concrete.