• Title/Summary/Keyword: Sludge volume index (SVI)

Search Result 28, Processing Time 0.023 seconds

Characteristics of Microbial Distribution of Nitrifiers and Nitrogen Removal in Membrane Bioreactor by Fluorescence in situ Hybridization (막/생물반응기에서 Fluorescence in situ Hybridization 기법을 이용한 질산화 미생물 분포특성 및 질소제거 연구)

  • Lim Kyoung-Jo;Kim Sun-Hee;Kim Dong-Jin;Cha Gi-Cheol;Yoo Ik-Keun
    • Microbiology and Biotechnology Letters
    • /
    • v.34 no.3
    • /
    • pp.257-264
    • /
    • 2006
  • An aerobic submerged membrane bioreactor (MBR) treating ammonium wastewater was studied in respect of nitrification characteristics and distribution of nitrification bacteria over a period of 350 days. MBR was fed with ammonium concentration of 500-1000 mg $NH_4-N/L$ at a nitrogen load of $1-2kg\;N/m^3{\cdot}d$. Overall ammonium oxidation rate increased with dissolved oxygen (DO) concentration, temperature, and sludge retention time (SRT). Under a higher concentration of free ammonia ($NH_3-N$) due to the decrease of ammonium oxidation rate, the nitrite ratio ($NO_2-N/NO_x-N$) in the effluent increased. The sudden collapse of nitrification efficiency accompanied by sludge foaming and the increase of sludge volume index (SVI) was observed unexpectedly during the operation. At the later stage of operation, additional carbon source was fed to the MBR and resulted in twice higher value of SVI and the decrease of ammonium oxidation rate. In fluorescence in situ hybridization (FISH) analysis, genus Nitrosomonas which is specifically hybridized with probe NSM156 was initially the dominant ammonia oxidizing bacteria and the amount of Nitrosospira gradually increased. Nitrospira was the dominant nitrite oxidizing bacteria during whole operational period. Significant amount of Nitrobacter was also detected which might due to the high concentration of nitrite maintained in the reactor.

Fuzzy Expert System for Bulking Prediction and Mitigation in the Activeated Sludge Process

  • Nam, Sung-Woo;Kim, Jung-Hwan-;Sung, U-Kyung;Lee, Kwang-Soon-
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.1102-1105
    • /
    • 1993
  • A fuzzy expert system for prediction and mitigation of sludge bulking was developed for an activated sludge process which treats waste water from a food industry. The developed system is able not only to infer the degree of progress of sludge bulking but also to generate remedial operation guides which may be sent to the local controllers as remote set points. One of the important consequences through this study is the BI (Bulking Index) inferred by the bulking prediction expert system was found to have a close correlation with the SVI (Sludge Volume Index) which is a practical measure of degree of bulking but needs tedious chores for its measurement.

  • PDF

Characteristics of Membrane Fouling and Nitrification in Nitrifying Membrane Bioreactor (Nitrifying membrane bioreactor에서의 막 오염 및 질산화 특성)

  • Lim, Kyoung-Jo;Hong, Soon-Ho;Yoo, Ik-Keun
    • Journal of Environmental Science International
    • /
    • v.20 no.9
    • /
    • pp.1079-1085
    • /
    • 2011
  • The purpose of this study is to find the operational characteristics of nitrifier-dominated membrane bioreactor (MBR), which has been extensively studied for organic removal, especially in terms of nitrite ($NO_2$-N) build-up and membrane fouling. Membrane fouling is one of the important factor which determines the economics of MBR system. The characteristics of membrane fouling was monitored in terms of the fouling indices such as sludge volume index (SVI), the concentration of total organic carbon (TOC) and extracellular polymeric substances (EPS) in a membrane permeate or sludge extract, the absorbance of supernatant at 260 nm. Most of index values except for protein concentration in EPS had a close relation with the increase of suction pressure and SVI value. Nitrifying MBR was superior to the conventional organic-oxidizing MBR in terms of membrane fouling since the fouling index value of nitrifying MBR was lower than that of BOD-oxidizing MBR.

Effects of Aerobic and Non-Aerobic Starvation on SBR Performance When Treating Saline Wastewater

  • Moon, Byung-Hyun;Park, Kyung-Hun;Kim, Sang-Soo;Yoon, Cho-Hee
    • Environmental Engineering Research
    • /
    • v.17 no.3
    • /
    • pp.139-144
    • /
    • 2012
  • In this study, the effects of starvation on floc characteristics when treating saline wastewater using a sequencing batch reactor (SBR) were investigated. The effectiveness over 5 days of starvation for aerobic and non-aerobic strategies for maintaining the physical characteristics of floc-forming sludge and the recovery period needed to regain the initial pollutant removal efficiency were investigated. Experiment results revealed that the sludge volume index (SVI) increased and the floc size and fractal dimension decreased after starvation under both aerobic and non-aerobic conditions. Sludge settleability deteriorated faster under aerobic conditions compared to non-aerobic conditions. Under non-aerobic conditions, the SBR required less time to return to its initial pollutant removal efficiency and settleability. Floc size, fractal dimension, and SVI were observed to be fairly correlated with each other. The results demonstrated that it was better to maintain the sludge under non-aerobic rather than aerobic starvation, because it adapted to, resisted starvation and had a quicker re-start afterward.

The effect of iron oxide ballasted flocculant on the activated sludge settleability and dewaterability (산화철계 가중응집제가 활성슬러지의 침전성 및 탈수성에 미치는 영향)

  • Yang, Hyeji;Kim, Yongbum;Choi, Younggyun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.35 no.4
    • /
    • pp.277-284
    • /
    • 2021
  • The ballasted flocculation effects of the mill scale and magnetite on activated sludge were investigated. Both ballasted flocculants (BF) could remarkably improve the sludge settleability in terms of zone settling velocity (ZSV) and sludge volume index (SVI). With the BF dosage of 0.2 to 2.0 g-BF/g-SS, the magnetite particles showed better efficiency on improving settling behavior of activated sludge than the mill scale due to higher surface area and hydrophobic property. The efficiency of SVI30 with magnetite injection was 2.5 to 11.3% higher than mill scale injection and that of the ZSV appreciated from 23.7% to 44.4% for magnetite injection. Averaged floc size of the BF sludge with magnetite dosage (0.5 g-BF/g-SS) was 2.3 times higher than that of the control sludge. Dewaterability of the sludge was also greatly improved by addition of the BF. The specific resistance to filtration (SRF) was reduced exponentially with increasing the dosage of BF. However, the BF's particle size effect on the SRF looks to be marginal. Consequently, for improving the dewaterability, the BF played a physical role to remove the pore water of the biological flocs by intrusive attachment and a chemical role to induce aggregation of the flocs by charge neutralization.

Evaluating Two Types of Rectangular Secondary Clarifier Performance at Biological Nutrient Removal Facilities (생물학적 고도처리공법에 적용된 두 형태의 장방형 이차침전지 성능 파악)

  • Lee, Byonghi
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.5
    • /
    • pp.561-570
    • /
    • 2013
  • There are two types of rectangular secondary clarifier at biological nutrient removal (BNR) facility to settle MLSS; conventional activated sludge secondary clarifier and Gould Type I clarifier. In this study, the performances of two types at respective biological nutrient removal facility are compared using weekly operational data. Surface Overflow Rate (SOR), Surface Loading Rate (SLR), Sludge Volume Index (SVI), secondary effluent SS concentration are studied. It has found that Gould Type I has 3.5 times less average secondary effluent SS concentration that is 2.4 mg/L than that of conventional activated sludge secondary clarifier. Both SOR and SLR have shown little effect on secondary effluent SS concentrations at Gould Type I clarifier in contrary that SOR affects the secondary effluent SS concentrations at conventional activated sludge rectangular secondary clarifier. From this study, it is recommended that Gould Type I must be considered for secondary clarifier when BNR plant is designed.

Soybean Wastewater Treatment by Activated Sludge Process (고농도 대두가공폐수의 처리를 위한 개선 활성슬러지법)

  • Cho, Kwon-Ik;Lee, Jeoung-Su;Lee, Tae-Kyoo;Kim, Jong-Hwa
    • Applied Biological Chemistry
    • /
    • v.45 no.1
    • /
    • pp.25-29
    • /
    • 2002
  • The kernel of wastewater treatment by activated sludge is elimination of organic substances and maintenance of well-flocculated sludge sedimentation. By the conventional activated sludge treatment, the optimum F/M ratio of soybean wastewater treatment was 0.24 (kg-BOD/kg-MLVSS day) and sludge bulking was generated at 0.48 (kg-BOD/kg-MLVSS day). To improve the treatment capacity and operation quality in higher loading of soybean wastewater, influent pH was constantly controlled by 9.0 using NaOH as a coagulant agent. In this process, higher loading up to 2.88 (kg-BOD/kg-MLVSS day) was possible and SVI was maintained under 150 without bulking. This was equivalent to 7.2 times higher than maximum permissible load of the conventional activated sludge process.

Solid-Liquid Separation Characteristics with Bio-filter Media Reactor (여과분리형 생물반응조의 고액분리 특성)

  • Park, Young Bae;Jung, Yong Jun
    • Journal of Wetlands Research
    • /
    • v.16 no.3
    • /
    • pp.347-353
    • /
    • 2014
  • This work was performed to find the effect of operation parameters on the permeate flux through the activated sludge dynamic layer, and to indicate the relationship between the water quality of supernatant and flux based on the results. Since the effluent can be obtained through steady and stable formation of cake layer in the bio-filter media system, it is an important subject to keep and control microbes with activated state in the bio-reactor. Filtration resistance was drastically increased at more than 18000mg/L of MLSS. With filtration time continued, the flux was gradually decreased and the water qualities of supernatant monitored by turbidity and TOC were also deteriorated. This phenomenon indicated that the organic materials generated by microbes and accumulated in the reactor might affect the flux in the system. In addition, the decrease of flux was simultaneously observed in the sludge volume index. When SVI was controlled from 150 to 250, the flux was also decreased. The proper aeration time was recommended to 30 to 60 seconds in this system. In order to operate this system steadily, therefore, the control of water quality of supernatant and SVI should be proceeded.

A Study on High Strength Nitrogen Wastewater Treatment and Sludge Granulation Characteristics in a Pilot-scale Air-lift Sequencing Batch Reactor (파일럿 규모의 공기 유동 연속회분반응기에서 고농도 질소제거 및 슬러지 그래뉼화 특성 연구)

  • Lee, Soochul;Kim, Dong-Jin
    • Clean Technology
    • /
    • v.18 no.4
    • /
    • pp.398-403
    • /
    • 2012
  • Selective nitrification and granulation have been carried out in a pilot scale air-lift sequencing batch reactor (SBR) for stable and economical nitrogen removal from wastewater. The SBR showed about 100% nitrification efficiency up to 1.0 kg ${NH_4}^+-N/m^3{\cdot}d$, about 90% efficiency at 1.0-2.0 kg ${NH_4}^+-N/m^3{\cdot}d$, and it was less than 90% when the load was higher than 2.0 kg ${NH_4}^+-N/m^3{\cdot}d$. Nitrite accumulation was induced by selective inhibition of nitrite oxidizing bacteria by free ammonia inhibition and dissolved oxygen limitation. For the purpose, high nitrite ratio (> 0.95) was obtained by keeping the pH higher than 8.0 and dissolved oxygen lower than 1.5 mg/L. In addition, sludge granulation was achieved by keeping reactor settling time to 5 minutes to wash out poor settling sludge and to promote the growth of granulation sludge. The operation accelerated sludge granulation and the sludge volume index (SVI) decreased and stably maintained to less than 75 in 60 days.

Study on the Biological Denitrification Reaction of High-Salinity Wastewater using an Aerobic Granular Sludge (AGS) (호기성 그래뉼 슬러지를 이용한 고농도 염분 함유 폐수의 생물학적 탈질 반응에 관한 연구)

  • Kim, Hyun-Gu;Ahn, Dae-Hee
    • Journal of Environmental Science International
    • /
    • v.28 no.7
    • /
    • pp.607-615
    • /
    • 2019
  • The purpose of this study is to biological treatment of high salinity wastewater using Aerobic Granular Sludge (AGS). In laboratory scale's experiments research was performed using a sequencing batch reactor, and evaluation of the denitrification reaction in accordance with the injection condition of salinity concentration, surface properties of microorganisms, and sludge precipitability was performed. The results showed that the salinity concentration increased up to 1.5%, and there was no significant difference in the nitrogen removal efficiency; however, it showed a tendency to decrease gradually from 2.0% onward. The specific denitrification rate (SDNR) was 0.052 - 0.134 mg $NO_3{^-}-N/mg$ MLVSS (mixed liquor volatile suspended solid)${\cdot}day$. The MLVSS/MLSS (mixed liquor suspended solid) ratio decreased to 76.2%, and sludge volume index ($SVI_{30}$) was finally lowered to 57 mL/g. Using an optical microscope, it was also observed that the initial size of the sludge was 0.2 mm, and finally it was formed to 0.8-1.0 mm. Therefore, salinity injection provides favorable conditions for the formation of an AGS, and it was possible to maintain stable granular sludge during long-term operation of the biological treatment system.