• Title/Summary/Keyword: Sludge characteristics

Search Result 669, Processing Time 0.033 seconds

On-site Output Survey and Feed Value Evaluation on Agro- industrial By-products (농산업부산물들에 대한 배출 현장 조사 및 사료적 가치 평가)

  • Kwak, W. S.;Yoon, J. S.
    • Journal of Animal Science and Technology
    • /
    • v.45 no.2
    • /
    • pp.251-264
    • /
    • 2003
  • This study was conducted to make on-site survey on the output pattern and utilization situation of 19 by-products selected, to evaluate their nutritional characteristics, to find out a reliable index with which digestion of by-products can be predicted on the basis of chemical compositions analyzed and to diagnose the risk of using book values in the absence of the actual values analyzed for diet formulation. Production and utilization situations of by-products were quite various. Nutritionally, fruit processing by-products such as apple pomace (AP), pear pomace (PP), grape pomace (GP), and persimmon peel (PSP), and bakery by-products (BB) were classified as energy feeds. Soybean curd meal (SCM), animal by- products such as blood (BD), feather meal (FM) and poultry by-products (PB), and activated milk processing sludge (AMS) were classified as protein feeds. Soy hulls (SH), spent mushroom compost (SMC), barley malt hulls (BMH), waste paper (WP) and broiler litter (BL) were classified as roughage. Rumen contents (RC) and restaurant food waste (FW) were nutritionally analogous to complete diets for cattle and swine, respectively. Compared to soybean meal (SBM), BD and FM contained high (P<0.05) levels of amino acids and barley malt sprouts (BMS), AMS and FW contained low (P<0.05) levels of amino acids. Enzymatic (pepsin) digestibilities of proteinaceous feeds ranged between 99 and 66%. In vitro DM digestibility was high (P<0.05) in the order of FW, BB, AP, SH, PP, PSP, BMH, BMS, SCM, GP, RC, PB, BL, WP, SMC, AMS, FM and BD. In vitro DM digestibility had the highest correlation (r=0.68) with nonfibrous carbohydrate among chemical components. Differences between analyzed values of chemical components and book values were considerable. Caution is required in using book values when large amount of by-products are used in diets.

Treatment of Malodorous Waste Air Containing Ammonia Using Biofilter System (바이오필터시스템을 이용한 암모니아 함유 악취폐가스 처리)

  • Lee, Eun Ju;Park, Sang Won;Nam, Dao Vinh;Chung, Chan Hong;Lim, Kwang-Hee
    • Korean Chemical Engineering Research
    • /
    • v.48 no.3
    • /
    • pp.391-396
    • /
    • 2010
  • In this research the characteristics of ammonia removal from malodorous waste-air were investigated under various operating condition of biofiilter packed with equal volume of rubber media and compost for the efficient removal of ammonia, representative source of malodor frequently generated at compost manufacturing factory and publicly owned facilities. Then the optimum conditions were constructed to treat waste-air containing ammonia with biofilter. Biofilter was run for 30 days(experimental frequency of 2 times/day makes 60 experimental times.) with the ammonia loading from $2.18g-N/m^3/h$ to $70g-N/m^3/h$ at $30^{\circ}C$. The ammonia removal efficiency reached almost 100% for I through IV stage of run to degrade up to the ammonia loading of $17g-N/m^3/h$. However the removal efficiency dropped to 80% when ammonia loading increased to $35g-N/m^3/h$, which makes the elimination capacity of ammonia $28g-N/m^3/h$ for V stage of run. However, the removal efficiency remained 80% and the maximum elimination capacity reached $55g-N/m^3/h$ when ammonia loading was doubled $70g-N/m^3/h$ for VI stage of run. Thus the maximum elimination capacity exceeded $1,200g-N/m^3/day$(i.e., $50g-N/m^3/h$) of the experiment of biofilter packed with rock wool inoculated with night soil sludge by Kim et al.. However, the critical loading did not exceed $810g-N/m^3/day$ (i.e., $33.75g-N/m^3/h$) of the biofilter experiment by Kim et al.. The reason to exceed the maximum elimination capacity of Kim et al. may be attributed to that the rubber media used as biofilter packing material provide the better environment for the fixation of nitrifying and denitrification bacteria to its surface coated with coconut based-activated carbon powder and well-developed inner-pores, respectively.

Characteristics and Control of Microthrix Parvicella Bulking in Biological Nutrient Removal Plant (생물학적 영양소제거공정에서 Microthrix Parvicella에 의한 Bulking 특성 및 제어)

  • Lee, H.;Ahn, K.
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.6
    • /
    • pp.1101-1106
    • /
    • 2006
  • Many BNR (Biological Nutrient Removal) plants have experienced a bulking problem, mainly due to the growth of filamentous organisms, particularly during the winter months. This study investigated the problem of bulking due to the growth of M. parvicella both at a full-scale municipal wastewater treatment plant and a pilot scale plant located in the C city. The full-scale facility was operated at a flow rate of $51,000m^3/d$, an F/M (Food-to-Microorganism) ratio of 0.12 kgBOD/kgMLVSS/d and an SRT (Solids Retention Time) higher than 25 days, respectively. This plant experienced bulking and foaming problems at low temperatures below $15^{\circ}C$ since it was retrofitted with the BNR system in 2003. The pilot plant employed had an identical process configuration as the full scale one and used the same wastewater source. It was operated at a flow rate of $3.8m^3/d$, temperatures between 10 to $25^{\circ}C$ and SRTs between 10 and 25 days. At full scale, the M. parvicella growth and SVI (Sludge Volume Index) patterns were studied in conjunction with temperature variations. At pilot scale, DO and SRT variations were also explored, in addition to the filamentous bacteria growth and SVI patterns. During the full-scale investigation, over a 3 year period, it was noted that the SVI was maintained within acceptable operational values (i.e. under 160) during the summer months. Moreover settling in the secondary clarifiers was good and was not affected by the presence of M. parvicella. In contrast, at low mean temperatures during winter, the SVI increased to over 300. Overall, as the temperature decreased, the predominance of M. parvicella became apparent. According to this study, M. parvicella growth could be controlled and SVI could drop under 160 by a change in operational conditions which involved an increase in DO concentration between 2 and 4 mg/L and a decrease in SRT to less than 20 days.

Environmental Leachability of Electric Arc Furnace Dust for Applying as Hazardous Material Treatment (제강분진을 이용한 유해물질 처리기술 적용을 위한 안전성 평가)

  • Lee, Sang-Hoon;Kang, Sung-Ho;Kim, Jee-Hoon;Chang, Yoon-Seok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.3
    • /
    • pp.329-336
    • /
    • 2006
  • Iron manufacturing process involves production of various by-product including slag, sludge, sintering and EAF(Electric Arc furnace dust). Some of the by-products such as EAF and sintering dust are disposed of as waste due to their high heavy metal contents. It has been notice for many years that the EAF dust also contain about 65% of Fe(0) and Fe(II) and then the possible utilization of the iron. One possibility is to apply the EAF as a lining material in conjunction with clay or HDPE liners, in waste landfill. The probable reaction between the leachate containing toxic elements such as TCE, PCE dioxine and $Cr^{6+}$ is reduction of the toxic materials in corresponding to the oxidation of the reduced iron and therefore diminishing the toxicity of the leachate. It is, however, prerequisite to evaluate the leaching characteristics of the EAF dust before application. Amelioration of the leachate would be archived only when the level of toxic elements in the treated leachate is less than that of in the untreated leachate. Several leaching techniques were selected to cover different conditions and variable environments including time, pH and contact method. The testing methods include availability test, pH-stat test and continuous column test. Cr and Zn are potentially leachable elements among the trace metals. The pH of the EAF dust is highly alkaline, recording around 12 and Zn is unlikely to be leached under the condition. On the contrary Cr is more leachable under alkaline environment. However, the released Cr should be reduced to $Cr^{3+}$ and then removed as $Cr(OH)_3$. Removal of the Cr is observed in the column test and further study on the specific reaction of Cr and EAF dust is underway.

Decomposition Characteristics of Non-Degradable Liquid Waste under High Temperature and High Pressure Conditions (고온 고압 조건에서의 난분해성 액상폐기물 분해 특성)

  • Lee, Gang-Woo;Shon, Byung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.6
    • /
    • pp.1572-1578
    • /
    • 2007
  • The specified wastes consist of waste acid, waste alkali, waste oil, waste organic solvent, waste resin, dust, sludge, infectious waste, and others. Among these specified wastes, a great portion is liquid phase wastes. The purpose of this study is to develop the high temperature and high pressure (HTHP) treatment system for decomposition of the liquid phase specified waste (LPSW). For this, we analyzed the physical and chemical properties of the LPSW such as density, proximate analysis, ultimate analysis, heating values, and designed 0.3 ton/day HTHP treatment system. The LPSW tested in this experiment were prepared by adding TCE(trichloroethylene) and toluene to liquid phase waste which was brought into the commercial waste treatment company. The average density of waste oil (25 samples), waste resin (5 samples), and waste solvent (12 samples) was 0.99 g/mL, 0.91 g/mL, and 0.93 g/mL, respectively. And the average lower heating value of waste oil, waste resin, and waste solvent was 8,294 kcal/kg, 5,809 kcal/kg, and 7,462 kcal/kg, respectively. The DRE (Destruction & Removal Efficiency) of TCE and toluene were 99.95% and 99.73% at atmospheric pressure conditions and that were 99.99% and 99.82% at pressurized conditions, respectively. These results showed that TCE/toluene mixtures were properly decomposed over about 99.73% of DRE by the HTHP treatment system and pressurized conditions were more effective to destroy those pollutants than atmospheric pressure conditions. Also these systems could be directly applied to industries which try to treat the liquid phase specified waste within the regulation limit.

  • PDF

Development of A Material Flow Model for Predicting Nano-TiO2 Particles Removal Efficiency in a WWTP (하수처리장 내 나노 TiO2 입자 제거효율 예측을 위한 물질흐름모델 개발)

  • Ban, Min Jeong;Lee, Dong Hoon;Shin, Sangwook;Lee, Byung-Tae;Hwang, Yu Sik;Kim, Keugtae;Kang, Joo-Hyon
    • Journal of Wetlands Research
    • /
    • v.24 no.4
    • /
    • pp.345-353
    • /
    • 2022
  • A wastewater treatment plant (WWTP) is a major gateway for the engineered nano-particles (ENPs) entering the water bodies. However existing studies have reported that many WWTPs exceed the No Observed Effective Concentration (NOEC) for ENPs in the effluent and thus they need to be designed or operated to more effectively control ENPs. Understanding and predicting ENPs behaviors in the unit and \the whole process of a WWTP should be the key first step to develop strategies for controlling ENPs using a WWTP. This study aims to provide a modeling tool for predicting behaviors and removal efficiencies of ENPs in a WWTP associated with process characteristics and major operating conditions. In the developed model, four unit processes for water treatment (primary clarifier, bioreactor, secondary clarifier, and tertiary treatment unit) were considered. Additionally the model simulates the sludge treatment system as a single process that integrates multiple unit processes including thickeners, digesters, and dewatering units. The simulated ENP was nano-sized TiO2, (nano-TiO2) assuming that its behavior in a WWTP is dominated by the attachment with suspendid solids (SS), while dissolution and transformation are insignificant. The attachment mechanism of nano-TiO2 to SS was incorporated into the model equations using the apparent solid-liquid partition coefficient (Kd) under the equilibrium assumption between solid and liquid phase, and a steady state condition of nano-TiO2 was assumed. Furthermore, an MS Excel-based user interface was developed to provide user-friendly environment for the nano-TiO2 removal efficiency calculations. Using the developed model, a preliminary simulation was conducted to examine how the solid retention time (SRT), a major operating variable affects the removal efficiency of nano-TiO2 particles in a WWTP.

Water Digital Twin for High-tech Electronics Industrial Wastewater Treatment System (II): e-ASM Calibration, Effluent Prediction, Process selection, and Design (첨단 전자산업 폐수처리시설의 Water Digital Twin(II): e-ASM 모델 보정, 수질 예측, 공정 선택과 설계)

  • Heo, SungKu;Jeong, Chanhyeok;Lee, Nahui;Shim, Yerim;Woo, TaeYong;Kim, JeongIn;Yoo, ChangKyoo
    • Clean Technology
    • /
    • v.28 no.1
    • /
    • pp.79-93
    • /
    • 2022
  • In this study, an electronics industrial wastewater activated sludge model (e-ASM) to be used as a Water Digital Twin was calibrated based on real high-tech electronics industrial wastewater treatment measurements from lab-scale and pilot-scale reactors, and examined for its treatment performance, effluent quality prediction, and optimal process selection. For specialized modeling of a high-tech electronics industrial wastewater treatment system, the kinetic parameters of the e-ASM were identified by a sensitivity analysis and calibrated by the multiple response surface method (MRS). The calibrated e-ASM showed a high compatibility of more than 90% with the experimental data from the lab-scale and pilot-scale processes. Four electronics industrial wastewater treatment processes-MLE, A2/O, 4-stage MLE-MBR, and Bardenpo-MBR-were implemented with the proposed Water Digital Twin to compare their removal efficiencies according to various electronics industrial wastewater characteristics. Bardenpo-MBR stably removed more than 90% of the chemical oxygen demand (COD) and showed the highest nitrogen removal efficiency. Furthermore, a high concentration of 1,800 mg L-1 T MAH influent could be 98% removed when the HRT of the Bardenpho-MBR process was more than 3 days. Hence, it is expected that the e-ASM in this study can be used as a Water Digital Twin platform with high compatibility in a variety of situations, including plant optimization, Water AI, and the selection of best available technology (BAT) for a sustainable high-tech electronics industry.

Effect of the Degree of Weathering on the Distribution of Aggregate Particle Size and the Generation of Fine Rock Particles during Crushing of Granite (화강암 파쇄시 풍화정도가 골재 입도분포 및 미석분 발생에 미치는 영향)

  • You, Byoung-Woon;Lee, Jin-Young;Lee, Dong-kil;Cheong, Young-Wook
    • Economic and Environmental Geology
    • /
    • v.55 no.5
    • /
    • pp.429-438
    • /
    • 2022
  • This study evaluated the effect of the degree of weathering on the particle size distribution and the amount of fine particles generated in the aggregate production process during the crushing of igneous rock. Rock samples were collected from three areas with differences in strength from the Schmith hammer measurement at the aggregate quarry in Geochang, Gyeongsangbuk-do. After crushing with a jaw crusher under the same conditions in laboratory, particle size analysis, mineral analysis, chemical analysis, and weathering index were calculated. The Schmidt hammer measurements were 56, 28, and <10, and the CIA and CIW values of weathering index were also different, so the rock samples were classified into hard rock, soft rock, and weathered rock according to the weathering degree. It shows a smaller particle size distribution toward weathered rocks under the microscope, and the proportion of altered clay minerals such as sericite increased. The composition of feldspar and quartz was high for hard rock, and the ratio of muscovite and kaolinite was low. As a result of the crushing of the jaw crusher, hard rock produced a lot of coarse crushed material (13.2mm), while soft rock and weathered rock produced fine crushed material (4.75mm). The former showed the characteristics of the beta distribution curve, and the latter showed the bimodal distribution curve. The production of fine rock particles (based on 0.71mm of sieve, wt. %) increased to 13%<21%<22% in hard rock, soft rock, and weathered rock, and the greater the degree of weathering, the more fine rock particles were generated. The fine particles are recovered by the operation of the sand unit in the wet aggregate production process. Therefore, in order to minimize the amount of sludge generated in the aggregate production process, it was judged that a study on the optimal operation of cyclones could be necessary.

Effects of Water Quality Improvement by Porosity of Fill Materials in Mattress/Filter System (Mattress/Filter 채움재의 공극률에 따른 하천수질 개선효과)

  • Ko, Jin Seok;Lee, Sung Yun;Heo, Chang Hwan;Jee, Hong Kee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1B
    • /
    • pp.51-60
    • /
    • 2006
  • Water quality improvement in mattress/filter system using porous material like slag from industrial activity and zeolite that has been studied for environment improvement and pollution abatement is very useful in polluted stagnant stream channel. Slag is consisted of CaO, $SiO_2$, $Al_2O_3$ and $Fe_2O_3$. Slag with large specific surface area of porosity has been used such as sludge settling and adsorptive materials. Because slag is porous, it can be used for purification filter. As slag is used as filled materials of mattress/filter system and the system has good advantages for the waste water treatment, water recycling, and the improvement of water quality at the same time and so on. Because zeolite has much advantage of cation exchange, adsorption, catalyst and dehydration characteristics, It is used for environment improvement of livestock farms, treatment of artificial sewage and waste water, improvement of drinking water quality, radioactive waste disposal and radioactive material pollution control. In this study, according to verifying effects of water quality improvement of fill materials by porosity that 38.6%, 45.8% and 49.8% respectively in the stagnant stream channel, water quality monitoring of inflow and outflow was conducted on pH, DO, BOD, COD, SS, T-N and T-P. Mattress/filter system was able to accelerate water quality improvement by biofilter as waste water flows through gap of mattress/filter fill materials and by contact catalysis, absorption, catabolism by biofilm. Mattress/filter system used slag and zeolite forms biofilm easily and accelerates adsorption of organic matter. As a result, mattress/filter system increases water self-purification and accelerates water quality improvement available for stream water clean-up.