• Title/Summary/Keyword: Sludge cake

Search Result 111, Processing Time 0.026 seconds

Solid-liquid Separation Characteristics of Membrane Filter Press according to Coagulant Properties of Anaerobic Digestion Waste Water (혐기소화폐액의 응집제 특성에 따른 멤브레인 필터프레스의 고액분리 특성)

  • Han, Seong Kuk;Jung, Hee Suk;Song, Hyoung Woon;Kim, Ho;Ahn, Dae Hyun
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.22 no.3
    • /
    • pp.23-32
    • /
    • 2014
  • Recently, it is increase in the processing of organic waste using anaerobic digestion. Therefore, the studies on the processing method for increasing the anaerobic digestion waste water. But it is very difficult to solid-liquid separation, because the characteristics of anaerobic digestion waste water. So this study evaluate solid-liquid separation efficiency of anaerobic digestion sludge using CST(Capillary Suction Time), TTF(Time to Filter). To address this problem, a membrane filter press of the lab scale was produced and the anaerobic digestion wastewater was applied to it. Polymer coagulants were found to be most suitable 7192PLUS and 1T60, It is necessary to minimum injection concentration is 7192PLUS (200 mg/L), 1T60 (100 mg/L). To evaluate dehydration efficiency, it was measured the moisture content of the dehydrated cake and suspended solids of decanted water. As a result, showed that a high removal efficiency of 97.4% when the solid-liquid separation using the membrane filter press. And the moisture content of the dehydrated cake was less than 65%.

Membrane fouling reduction using electro-coagulation aided membrane bio-reactor (전기응집 분리 막 생물반응기의 막 오염 저감)

  • Kim, Wan-Kyu;Hong, Sung-Jun;Chang, In-Soung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.8
    • /
    • pp.105-114
    • /
    • 2018
  • Membrane fouling in EC-MBR (Electro-Coagulation aided Membrane Bio-Reactor) processes was evaluated according to the operating parameters, such as current density and contact time. In addition, the fouling mechanism was investigated. Compared to the control (i.e., no electro-coagulation), membrane fouling for filtration of the activated sludge suspension after electro-coagulation was reduced significantly. Membrane fouling was improved further when the contact time was doubled under a low current density of $2.5A/m^2$. On the other hand, membrane fouling was not mitigated further, as expected, even though the contact time was doubled from 12 to 24 hr. at a current density of $10A/m^2$. This indicates that the overall decrease in membrane fouling is a function of the product of the current density and contact time. The particle size of the activated sludge flocs after electro-coagulation was changed slightly, which means that the membrane fouling reduction was not attributed to a larger particle size resulting from electro-coagulation. The experimental confirmed that the dynamic membrane made from aluminum hydroxide, Al(OH)3, and/or aluminum phosphate, Al(PO4), which had been formed during the electro-coagulation, played a key role on the reduction of membrane fouling. The dynamic membrane prevents the particles in the feed solution from deposition to the membrane pores and cake layers. Dynamic membrane formation as a result of electro-coagulation plays a critical role in the mitigation of membrane fouling in EC-MBR.

The Density and Strength Properties of Lightweight Foamed Concrete Using Stone-Powder Sludge in Hydrothermal Reaction Condition (수열반응 조건에서 석분 슬러지를 사용한 경량 기포 콘크리트의 밀도와 강도 특성)

  • Kim, Jin-Man;Jeong, Ji-Yong;Choi, Se-Jin;Kim, Bong-Joo
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.5 s.95
    • /
    • pp.687-693
    • /
    • 2006
  • The Stone Powder Sludge(below SPS) is the by-product from the process that translates stone power of 8mm under as crushed fine aggregate. It is the sludge as like cake that has average particle size of $7{\mu}m$, absorbing water content of 20 to 60%, and $SiO_2$ content of 60% over. Because of high water content of SPS, it is not only difficult to handle, transport, and recycle, but also makes worse the economical efficiency due to high energy consuming to drying. This study is aim to recycle SPS as it is without drying. Target product is the lightweight foamed concrete that is made from the slurry mixed with pulverized mineral compounds and foams through hydro-thermal reaction of CaO and $SiO_2$. Although in the commercial lightweight foamed concrete CaO source is the cement and $SiO_2$ source is high purity silica powder with $SiO_2$ of 90%, we tried to use the SPS as $SiO_2$ source. From the experiments with factors such as foam addition rate and replacement proportion of SPS, we find that the lightweight foamed concrete with SPS shows the same trends as the density and strength of lightweight foamed concrete increases according to decrease of foam addition rate. But in the same condition, the lightweight foamed concrete with SPS is superior strength and density to that with high purity silica. This trends is distinguished according to increase of replacement proportion of SPS, also the analysis of XRF shows that the hydro thermal reaction translates SPS to tobermorite. Although SPS has low $SiO_2$ contents, the lightweight foamed concrete with SPS has superior strength and density, because it reacts well with CaO due to extremely fine particles. We conclude that it is possible to replace the high purity silica as SPS in the lightweight foamed concrete experimentally.

Surface Characterization of NF membranes for Hardness Removal and Its Implications to Fouling Mechanisms (경도제거용 나노여과막의 표면 특성 분석 및 막오염기작 연구)

  • Ham, Sangwoo;Kim, Youngjin;Kim, Chunghwan;Shon, Hokyong;Hong, Seungkwan
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.4
    • /
    • pp.559-567
    • /
    • 2013
  • In recent years, NF (nanofiltration) membrane has been receiving great attention for hardness removal and has begun to replace traditional lime soda ash softening process, particularly in Florida, USA, mainly due to less sludge production and easy operation. This study aimed to provide detailed surface characteristics of various commercial NF membranes by performing sophisticated surface analysis, which would help more fundamentally understand the performance of NF membranes. More specifically, a total of 7 NF membranes from top NF/RO manufacturers in the world were examined for basic performance tests, surface analysis, and fouling potential assessment. The results demonstrated that NF membranes are classified into two groups in terms of surface zeta potential; they are highly negatively charged ones, and neutral and/or less negatively charged ones. Their hydrophobicities, measured by contact angle, varied from hydrophilic to slightly hydrophobic ones. The AFM measurements showed various surface roughness, ranging from 23 nm (smooth) to 162 nm (rough) of average peak height. Lab-scale fouling experiments were performed using feedwater obtained from conventional water treatment plants in the province of Korea, and their results attempted to correlate to surface characteristics of NF membranes. However, unlike typical RO membranes, no clear correlation was found in this study, indicating that fouling mechanisms of NF membrane may be different from those of typical RO membranes, and both cake deposition and pore blocking mechanisms should be considered simultaneously.

THE EFFECT OF AIR BUBBLES FROM DISSOLVED GASES ON THE MEMBRANE FOULING IN THE HOLLOW FIBER SUBMERGED MEMBRANE BIO-REACTOR (SMBR)

  • Jang, Nam-Jung;Yeo, Young-Hyun;Hwang, Moon-Hyun;Vigneswaran, Saravanamuthu;Cho, Jae-Weon;Kim, In S.
    • Environmental Engineering Research
    • /
    • v.11 no.2
    • /
    • pp.91-98
    • /
    • 2006
  • There is a possibility of the production of the air bubbles in membrane pores due to the reduction in pressure during membrane filtration. The effect of fine air bubbles from dissolved gases on microfiltration was investigated in the submerged membrane bio-reactor (SMBR). The $R_{air}$ (air bubble resistance) was defined as the filtration resistance due to the air bubbles formed from the gasification of dissolved gases. From the results of filtration tests using pure water with changes in the dissolved oxygen concentration, the air bubbles from dissolved gases were confirmed to act as a foulant and; thus, increase the filtration resistance. The standard pore blocking and cake filtration models, SPBM and CFM, respectively, were applied to investigate the mechanism of air bubble fouling on a hollow fiber membrane. However, the application of the SPBM and CFM were limited in explaining the mechanism due to the properties of air bubble. With a simple comparison of the different filtration resistances, the $R_{air}$ portion was below 1% of the total filtration resistance during sludge filtration. Therefore, the air bubbles from dissolved gases would only be a minor foulant in the SMBR. However, under the conditions of a high gasification rate from dissolved gases, the effect of air bubble fouling should be considered in microfiltration.

A study on possibility of using CST as a fouling evaluation index at MBR (MBR에서 fouling 평가지표로서 CST의 활용 가능성에 대한 연구)

  • Kim, Yun-Ji;Choi, Yun-Jeong;Sim, Tae-Suk;Hwang, Sun-Jin
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.35 no.6
    • /
    • pp.379-387
    • /
    • 2021
  • In general, trans-membrane pressure (TMP), flux, filtration resistance are used as indicators to evaluate the degree of fouling in MBR. However, they have limitations in determining the level of EPS generation, which is known as an important factor of fouling. Therefore, a new evaluation method is required to monitor the amount of EPS generation. In this study, the applicability of capillary suction time (CST), which is used to measure the dewaterability of sludge, was evaluated as an indirect fouling evaluation index. Statistical analysis was performed to evaluate the effect of EPS on CST, and to determine whether EPS has high similarity with representative fouling evaluation indicators and CST, and quantitatively compared them. As a result, the correlation coefficient between CST and bEPS was 0.7988, which was higher than the correlation coefficient between filtration resistance and bEPS. Since bEPS is a major factor inducing fouling by affecting the formation of the cake layer, it was evaluated that CST, which has a high correlation with bEPS, is suitable to represent EPS. In addition, it was evaluated that the correlation coefficient between filtration resistance and CST was high as 0.7187, which could be used as a fouling evaluation index.

Effect of the Pretreatment by Thermal Hydrolysis on Biochemical Methane Potential of Piggery Sludge (열가수분해 전처리가 양돈 슬러지의 메탄생산퍼텐셜에 미치는 영향)

  • Kim, Seung-Hwan;Kim, Ho;Kim, Chang-Hyun;Yoon, Young-Man
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.4
    • /
    • pp.524-531
    • /
    • 2012
  • The objective of this study was to investigate the organic solubilization (SCOD) and improvement of methane production for pig slurry by thermal hydrolysis. A sludge cake was pretreated by thermal hydrolysis at different reaction temperatures (200, 220, 250, $270^{\circ}C$). Ultimate methane potential (Bu) was determined at several substrate and inoculum (S/I) ratios (1:9, 3:7, 5:5, 7:3 in volume ratio) by biochemical methane potential (BMP) assay for 73 days. Pig slurry SCOD were obtained with 98.4~98.9% at the reaction temperature of $200{\sim}270^{\circ}C$. Theoretical methane potentials ($B_{th}$) of thermal hydrolysates at the reaction temperature of $200^{\circ}C$, $220^{\circ}C$, $250^{\circ}C$, $270^{\circ}C$ were 0.631, 0.634, 0.705, $0.748Nm^3\;kg^{-1}-VS_{added}$, respectively. $B_u$ of $200^{\circ}C$ thermal hydrolysate were decreased from $0.197Nm^3\;kg^{-1}-VS_{added}$ to $0.111Nm^3\;kg^{-1}-VS_{added}$ with the changes of S/I ratio from 1:9 to 7:3, and also $B_u$ of different thermal hydrolysates ($220^{\circ}C$, $250^{\circ}C$, $270^{\circ}C$) showed same tendency to $B_u$ of $200^{\circ}C$ thermal hydrolysate according to the changes of S/I ratio. Anaerobic biodegradability ($B_u/B_{th}$) of $200^{\circ}C$ thermal hydrolysate at different S/I ratios was decreased from 32.2% for S/I ratio of 1:9 to 17.6% for S/I ratio of 7:3. $B_u/B_{th}$ of $220^{\circ}C$, $250^{\circ}C$, and $270^{\circ}C$ thermal hydrolysat were decreased from 36.4% to 9.6%, from 31.3% to 0.8%, and from 26.6% to 0.8%, respectively, with the S/I ratio change, respectively. In this study, the rise of thermal reaction temperature caused the decrease of anaerobic digestibility and methane production while organic materials of pig slurry were more solubilized.

Reduction of Dehydrated Cake by the Optimization of Flocculation Factors and the Single Flocculant/Dual Flocculation System (응집인자 최적화 및 다단응집 시스템을 이용한 탈수 케이크 감량)

  • Kim, Hyung-Jun;Bae, Young-Han;Lee, Sang-Hee
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.8
    • /
    • pp.839-846
    • /
    • 2008
  • The flocculation characteristics of polyacrylamide base flocculants were estimated to reduce the moisture content of the dehydrated cakes. The dewaterability for sewage sludge was found to have a marked effect depending on the flocculant type, agitating speed and time, kind of dissolution water, etc. The optimal agitating speed and time were 700 rpm and 3 sec, respectively, in this experimental condition. and the dewaterability was proportion to the agitating speed upto 700rpm. When recycle water as the dissolution water was used, the solution viscosity of all kind of flocculants was decreased. However, the change of its viscosity are not proportioned to the dewaterabilities for each flocculant. Flocculation system of combinations of the first and sencond flocculation using single flocculant was investigated. Effects of the ratio of first and second dosage for dual flocculation on the dewaterability were also investigated. The optimum conditions of dual flocculation system are 75% and 50% as first dosages for low and high viscous flocculant for total dosage of common flocculation, respectively. Based on the results, an overall mechanism of dual flocculation system is proposed and it is envisaged that optimization of flocculation processes in this way can result in considerable savings in cost.

Utilization of Industrial Wastes for Organic Fertilizer Use (유기질비료(有機質肥料) 자원(資源)으로서의 산업폐기물(産業廢棄物))

  • Han, Ki-Hak
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.11 no.3
    • /
    • pp.195-206
    • /
    • 1979
  • Where the industrial waste is increasing in number of kind and in quantities by the industrialization and population increases, the pollution problem is not only national but grobal question of the day. This paper is trying to invite attentions by the people who are working in both sector-natural sciences and industries in reviewing limited reports and materials. 1. By the chemical evaluation of over 20 industrial waste produced in Korea, potential wastes for commercial fertilizer would be wastes from alcohol fermantation, beer brewery, leather processing, synthetic fiber, and coffee grounds. 2. The composition of city waste is differ from other countries and sludge cake from human feces processing is promising one in the organic matter and phosphate content particularly. However, the content of heavy matals, specific order, and availability of phosphate are the bottle-neck for the development. 3. There is one commercial fertilizer from industrial waste in the market. It is very reasonable in the content of nitrogen and organic matter, and its formulation and responeses on crops. 4. Discussions were also given on the general problems in processing and marketing of fertilizers from industrial waste, however, scientists and industrial owners have to pay more attention on the development of fertilizers from tire industrial wastes because of vital environmental protection view-point.

  • PDF

A Study on the sludge drying using waste heat of cogeneration plant (열병합발전소 보일러 폐열을 이용한 슬러지 건조 연구)

  • Ryu, Seung-Han;Lee, Sang-Hun;Shin, Dong-Hoon;Park, Jun-Hyung;Jo, Suk-Jin;Kwak, Sung-Sik;Woo, Young-Hoon;Jeon, Jong-Seok
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2011.11a
    • /
    • pp.60-60
    • /
    • 2011
  • 염색폐수의 정화에는 필연적으로 다량의 슬러지 폐기물이 발생한다. 염색폐수 슬러지는 그간 인근 공해 해상에 투기하는 해양 배출로 저렴하게 처리하였으나, 해양오염을 우려하는 국제협약(1972년 런던협약, 1996년 교토의정서)에 의하여 2008년 8월부터 배출기준이 강화되고 2012년 2월부터는 해양배출이 금지 될 예정이다. 염색폐수 슬러지의 해양 배출이 금지되면 대체 처리방법으로는 지정매립장을 통한 매립처리 방법이나 고온 소각시설에서의 소각처리 방법이 거론되고 있다. 그러나 매립처리는 슬러지 내 함유 수분으로 인한 침출수의 문제와 더불어 장기간 안정적으로 저렴하게 사용할 수 있는 대규모 처분장을 확보하기 어려운 실정이며 소각처리는 슬러지의 높은 함수율로 인해 소각 시보조 연료의 투입이 필연적으로 최근 원유가 급등 등 에너지 비용이 지속적으로 상승함을 고려할 때 소각처리비용 또한 상당한 고가가 될 것으로 예측된다. 이와 같이 슬러지 해양배출이 금지되면 섬유 염색업체들은 많은 환경비용 부담을 안을 것이다. 본 연구에서는 대규모 염색산업단지 공동폐수처리장에서 발생하는 염색폐수 슬러지의 효율적인 건조를 위해 산업단지 내의 열병합발전소에서 발생하는 보일러 폐열을 이용하였으며, 조건 특성 및 효율을 파악하기 위해 보일러 폐열의 특성을 고려하여 슬러지 두께 및 체류시간 등 건조공정 운영조건에 따른 변수별 연구를 수행하였다. 열병합발전소 보일러에서 배출되는 폐열은 온도가 $150^{\circ}C$ 정도로 기존의 슬러지 건조에서는 사용되는 $700^{\circ}C$에 비해서는 매우 저온이다. 하지만 보일러 배가스의 경우, 온도에 비해 많은 풍량을 가지고 있으므로 열량으로 환산시 충분히 가치가 있는 것으로 조사되었다. 염색폐수 슬러지의 경우, 함수율 70% 이내의 탈수 Cake 형태이므로 두께가 두꺼울수록 건조효율이 감소하였으며, 체류시간이 길어질수록 건조효율은 증가하나 20mm 이상에서는 건조효율이 급격히감소하였다. 이를 바탕으로 5톤/일 규모 슬러지 건조 Pilot Plant를 제작하여 운영하였는데, 염색폐수슬러지의 투입공정에서 슬러지와 열풍의 접촉면적을 넓혀 건조효율을 높이기 위하여 슬러지를 압출노즐을 이용하여 슬라이스 칩 형태로 제조하여 건조공정에 투입하였으며, 건조실 내에서도 건조효율의 상승을 위하여 내부열풍순환팬을 설치하여 운영하였다. Pilot 운영결과, 체류시간 52분에서 슬러지의 함수율은 70%에서 10%이하로 감소하였다.

  • PDF