• Title/Summary/Keyword: Sludge Reduction

Search Result 315, Processing Time 0.027 seconds

Effects of Vermicompost Application on the Growth and Ginsenoside Content of Panax ginseng in a Reclaimed Field

  • Eo, Jinu;Park, Kee-Choon;Lim, Jin-Soo;Kim, Myung-Hyun;Choi, Soon-Kun;Na, Young-Eun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.2
    • /
    • pp.138-143
    • /
    • 2016
  • The objective of this study was to evaluate the effects of the application of vermicomposts on the growth parameters and ginsenoside content of ginseng roots. Food waste vermicompost (FW), cow manure vermicompost (CM), and paper sludge vermicompost (PS) were applied at 10 and $40t\;ha^{-1}$, respectively. One-year-old seedlings were transplanted and 4-year-old roots were harvested. Soil nitrate and phosphate concentrations were increased in the plots applied with FW and CM at $40t\;ha^{-1}$. Soil pH and exchangeable Ca concentrations were higher at FW $40t\;ha^{-1}$ than at CM $40t\;ha^{-1}$. Root yield increased when treated with FW $40t\;ha^{-1}$ in comparison to the yield for the control. The incidences of root rot disease and ginsenoside content were not significantly affected by the treatments. The results suggested that application of vermicompost might not show a relationship between root biomass and ginsenoside content. It further showed that proper use of vermicompost can promote root yield without a reduction in root quality or an increase in the incidence of root rot disease in reclaimed fields.

Evaluation of Complex Odor and Odorous Compounds in a Pilot-Scale Ultra Thermophilic Aerobic Composting Process (초고온 호기성 퇴비화 공정의 복합 악취 및 악취 물질 평가)

  • Park, Seyong;Jung, Dai-Hyuck;Yoo, Eui-Sang;Kim, Moonil
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.5
    • /
    • pp.33-39
    • /
    • 2009
  • This study was conducted to evaluate production of complex odor and 12 specific odorous compounds in a pilot-scale (capacity : $100m^3$) ultra thermophilic aerobic composting. There were three types input: municipal wasted sludge, livestock manure and slurry, and food waste produced in Jung-Eb city. Each raw material was mixed with seed material and operated for two periods (1st : 50 days, 2nd : 60days). During composting, the temperature hit $90{\sim}95^{\circ}C$ after every mixing in both periods. Therefore, it was concluded that increasing temperature also saves the time which required for composting and high reduction of organics and water contents. The primary odorous compounds were ammonia, methyl mercaltan, dimethyl disulfide and trimethylamine. The concentration of the primary compounds and complex odor during the operation were higher than those on final day and most compounds did not exceed the allowable exhaust standard for odor. Also, it was found that optimal mixing time and control of high temperature are the most important parameters for odor control in ultra thermophilic aerobic composting.

  • PDF

Strengths and Permeability Properties of Porous Polymer Concrete for Pavement with Different Fillers (충전재 종류에 따른 포장용 포러스 폴리머 콘크리트의 강도 및 투수 특성)

  • Kim, Young-Ik;Sung, Chan-Yong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.49 no.4
    • /
    • pp.51-59
    • /
    • 2007
  • Recently, concrete has been made porous and used for sound absorption, water permeation, vegetation and water purification according to void characteristics. Many studies are carried out on the utilization of sewage sludge, fly ash and waste concrete to reduce the environmental load. This study was performed to evaluate the void, strength, relationship between void and strength, permeability and chemical resistance properties of porous polymer concrete for pavement with different fillers. An unsaturated polyester resin was used as a binder, crushed stone and natural sand were used as an aggregate and bottom ash, fly ash and blast furnace slag were used as fillers. The mix proportions were determined to satisfy the requirement for the permeability coefficient, $1{\times}10^{-2}$ cm/s for general permeable cement concrete pavement in Korea. The void ratios of porous polymer concrete with fillers were in the range of $18{\sim}23%$. The compressive strength and flexural load of porous polymer concrete with fillers were in the range of $19{\sim}22$ MPa and $18{\sim}24$ KN, respectively. The permeability coefficients of porous polymer concrete with fillers were in the range of $5.5{\times}10^{-1}{\sim}9.7{\times}10^{-2}$ cm/s. At the sulfuric acid resistance, the weight reduction ratios of porous polymer concrete immersed during 8-week in 5% $H_{2}SO_{4}$ were in the range of $1.08{\sim}3.56%$.

Characterization of Heavy Metals Bioleaching from Fly Ash by a Sulfur-Oxidizing Bacterium Thiobacillus thiooxidans: Effect of Solid Concentrations (황산화세균 Thiobacillus thiooxidans에 의한 fly ash의 중금속 제거 특성:고형물 농도의 영향)

  • 조경숙;문희선;이인숙
    • Korean Journal of Environmental Biology
    • /
    • v.17 no.2
    • /
    • pp.183-190
    • /
    • 1999
  • The bioleaching of heavy metals from fly ash was performed by Thiobacillus thiooxidans MET isolated from the enrichment culture of an anaerobically digested sludge. The effect of solid concentrations on the efficiency of metal leaching was studied in shaken flasks. In the range of solid concentrations 20 g.L­$^1$to 100 g.L­$^1$T. thiooxidans MET oxidized S$^{0}$ to sulfate without any lag period. The final pH of slurry solution was decreased to below pH 1, and the final oxide-redox potential (ORP) was increased to over 420 mV in the solid concentrations below 100 g.L­$^1$. However, the initial lag period of 4 to 8 days was required to obtain the pH reduction and ORP increase of the slurry solutions in the range of solid concentrations 150 g.L­$^1$to 300 g.L­$^1$. The sulfur oxidation rate of T. thiooxidans MET in 20~100 g.L­$^1$solid concentrations was 0.70~0.75 g-S.L­$^1$ㆍ d­$^1$, but its sulfur oxidation activity was remarkably inhibited with increasing solid concentration over 150 g.L­$^1$. Increasing fly ash solids concentration in the range of solids concentration 20 g.L­$^1$ to 200 g.L­$^1$decreased the removal efficiency of Zn, Cu, Mn, Cr and Pb. The solubilization of heavy metals from fly ash was strongly correlated with the pH value of slurry solution. When the pH of slurry solution was reduced to 3, the solubilization process of Zn, Cu and Mn started, and their solubilization efficiency of Zn, Cu and Mn was progressively increased below pH 2. However, the solubilization process of Cr and Pb started at pH 2.5 and 2.0, respectively.

  • PDF

Characteristics of Carbon Source Biosorption (유기물 생흡착 현상에 관한 기초연구)

  • Lee, Dong-Hoon;Lee, Doo-Jin;Kim, Seung-Jin;Chung, Jonwook;Bae, Wookeun
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.1
    • /
    • pp.23-29
    • /
    • 2006
  • Biosorption technology was used to remove hazardous materials from wastewater, herbicide, heavy metals, and radioactive compounds, based on binding capacities of various biological materials. Biosorption process can be explained by two steps; the first step is that target contaminants is in contact with microorganisms and the second is that the adsorbed target contaminants is infiltrated with inner cell through metabolically mediated or physico-chemical pathways of uptake. Until recently, no information is available to explain the definitive mechanism of biosorption. The purpose of this study is to evaluate biosorption capabilities of organic matters using activated sludge and to investigate affecting factors upon biosorption. Over 49% of organic matter could be removed by positive biosorption reaction under anoxic condition within 10 minutes. The biosorption capacities were constant at around 50 mg-COD/mg-MLSS for all batch experiments. As starvation time increased under aerobic or anaerobic conditions, biosorption capacity increased since higher stressed microorganisms by starvation was more brisk. Starvation stress of microorganisms was higher at aerobic condition than anaerobic one. As temperature increased or easily biodegradable carbon sources were used, biosorption capacities increased. Consequently, biosorption can be estimated by biological -adsorbed capability of the bacterial cell-wall and we can achieve the cost-effective and non -residual denitrification with applying biosorption to the bio-reduction of nitrate.

Characteristics of a Novel Acinetobacter sp. and Its Kinetics in Hexavalent Chromium Bioreduction

  • M., Narayani;K., Vidya Shetty
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.5
    • /
    • pp.690-698
    • /
    • 2012
  • Cr-B2, a Gram-negative hexavalent chromium [Cr(VI)] reducing bacteria, was isolated from the aerator water of an activated sludge process in the wastewater treatment facility of a dye and pigment based chemical industry. Cr-B2 exhibited a resistance for 1,100 mg/l Cr(VI) and, similarly, resistance against other heavy metal ions such as $Ni^{2+}$ (800 mg/l), $Cu^{2+}$ (600 mg/l), $Pb^{2+}$ (1,100 mg/l), $Cd^{2+}$ (350 mg/l), $ZN^{2+}$ (700 mg/l), and $Fe^{3+}$ (1,000 mg/l), and against selected antibiotics. Cr-B2 was observed to efficiently reduce 200 mg/l Cr(VI) completely in both nutrient and LB media, and could convert Cr(VI) to Cr(III) aerobically. Cr(VI) reduction kinetics followed allosteric enzyme kinetics. The $K_m$ values were found to be 43.11 mg/l for nutrient media and 38.05 mg/l for LB media. $V_{max}$ values of 13.17 mg/l/h and 12.53 mg/l/h were obtained for nutrient media and LB media, respectively, and the cooperativity coefficients (n) were found to be 8.47 and 3.49, respectively, indicating positive cooperativity in both cases. SEM analysis showed the formation of wrinkles and depressions in the cells when exposed to 800 mg/l Cr(VI) concentration. The organism was seen to exhibit pleomorphic behavior. Cr-B2 was identified on the basis of morphological, biochemical, and partial 16S rRNA gene sequencing chracterizations and found to be Acinetobacter sp.

Development of Alternative External Carbon Source from Wasting Carbonaceous Organic Resource and Full Scale Application (유기폐자원을 이용한 고도하수처리 대체탄소원 개발 및 실플랜트 적용)

  • Jung In Chul;Kim Ho Young;Kang Dong Hyo;Jung Joung Soon;Lee Sang Won;Lim Keun Taek;Kim Chang Won
    • Journal of Environmental Science International
    • /
    • v.13 no.10
    • /
    • pp.911-919
    • /
    • 2004
  • The purpose of this research was evaluated economical effect to apply alternative external carbon source. Conventional activated sludge process in municipal wastewater treatment plant was adapted and introduced to Biological nutrient removal processes to meet the newly enforced effluent quality standard for nutrient removal in Korea. Low $COD/NH_4^+-N$ ratio and higher nutrient concentration of influent characteristics force to inject external carbon source for denitrifying recycled nitrate. In the most case, methanol was used as external carbon source. But Methanol is expensive and very dangerous in handling. So we could find cheaper and safer external carbon source substituted methanol in last study. This alternative external carbon source is named RCS(recoverd carbon source) and a by-product of fine chemical product at chemical plant. When RCS was applied real municipal wastewater treatment plant, average $55\~65\%$ of T-N removal efficiency, 8.8mg/l of effluent T-N concentration, 11.3mg/l of effleunt COD concentration were obtained without effluent COD increase as against used methanol. To apply RCS in municipal wastewater treatment plant obtain approximately $\74.5%$ expenditure cost reduction in comparison with methanol dosage cost.

Optimization of air scouring for an effective control of membrane fouling in submerged MBR (침지형 MBR 공정의 공기 세정 최적화를 통한 효율적 막 오염 제어)

  • Kim, Jun-Young;Baek, Byung-Do;Chang, In-Soung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.6
    • /
    • pp.645-652
    • /
    • 2016
  • A membrane module including grid was designed and introduced to MBR (membrane bio-reactor) for the purpose of better control of membrane fouling. It could be anticipated that the grid enhances the shear force of fluid-air mixture into the membrane surface by even-distributing the fluid-air to the membrane module. As MLSS concentration, packing density which is expressed in the ratio of the housing and the cross-sectional area of membrane fibers ($A_m/A_t$) and air-flow rate were changed, membrane foulings were checked by monitoring fouling resistances. The total fouling resistance ($R_c+R_f$) without grid installation (i.e., control) was $2.13{\times}10^{12}m^{-1}$, whereas it was reduced to $1.69{\times}10^{12}m^{-1}$ after the grid was installed. Regardless of the grid installation, the $R_c+R_f$ increased as the packing density increased from 0.09 to 0.28, however, the increment of resistance for the grid installation was less than that of the control. Increase in the air flow rate did not always guarantee the reduction of fouling resistance, indicating that the higher air flow rate can partially de-flocculate the activated sludge flocs, which led to severer membrane fouling. Consequently, installation of grids inside the housing have brought a beneficial effect on membrane fouling and optimum air flow rate is important to keep the membrane lowering fouling.

Urban Streams' Water Quality and Odor Control Using Pure Oxygen and Vortex Aerator (순산소와 Vortex Aerator를 이용한 도심하천의 수질 및 악취 관리)

  • Yoon, Dain;Choi, Mijeong;Park, Sunghyuk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.5
    • /
    • pp.493-504
    • /
    • 2021
  • The target site, Goejeongcheon flows through downtown of Saha-gu, Busan and it connects to the Nakdong-gang estuary. But non-point pollutants and sewage sludge are partially flowing into the stream and deposited. As a result, dissolved oxygen concentrations of the stream were observed close to the anaerobic condition. Multistage Vortex Aerator was applied for restoring this urban stream. It dissolves oxygen by repeatedly causing collisions between water and oxygen by vortex flow. The changes in water quality and odor were monitored for 2 months while circulating 1 m3/min of water with 22 ppm dissolved oxygen. As a result of the operation, the dissolved oxygen was improved from slightly Bad (4)~Bad (5) to Good (1b)~Normal (3) grade, and the total phosphorus concentration was decreased by 76 % on average. In the case of complex odor, a maximum reduction of 84.5 % was observed on the day the entire river was anaerobic. Through this study, we evaluated the feasibility of applying pure oxygen and Vortex Aerator for the the stream restoration. It is expected that the results of this study can be used for full-scale design.

Effect of Inorganic Nanocomposite Based Liners on Deodorization of Kimchi

  • Chung, Kwon;Park, Hyun Jin;Shin, Yang Jai
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.27 no.2
    • /
    • pp.55-62
    • /
    • 2021
  • This study aims to reduce the rancid odor generated during the fermentation process of kimchi by inserting zinc oxide (ZnO) into an inorganic porous material with a high surface area to decompose or adsorb the fermentation odor. ZnO activated by the presence of moisture exhibits decomposition of rancid odors. Mixed with Titanium dioxide (TiO2), a photocatalyst. To manufacture the packaging liner used in this study, NaOH, ZnCl2, and TiO2 powder were placed in a tank with diatomite and water. The sludge obtained via a hydrothermal ultrasonication synthesis was sintered in an oven. After being pin-milled and melt-blended, the powders were mixed with linear low-density polyethylene (L-LDPE) to make a masterbatch (M/B), which was further used to manufacture liners. A gas detector (GasTiger 2000) was used to investigate the total amount of sulfur compounds during fermentation and determine the reduction rate of the odor-causing compounds. The packaging liner cross-section and surface were investigated using a scanning electron microscope-energy dispersive X-ray spectrometer (SEM-EDS) to observe the adsorption of sulfur compounds. A variety of sulfur compounds associated with the perceived unpleasant odor of kimchi were analyzed using gas chromatography-mass spectrometry (GC-MS). For the analyses, kimchi was homogenized at room temperature and divided into several sample dishes. The performance of the liner was evaluated by comparing the total area of the GC-MS signals of major off-flavor sulfur compounds during the five days of fermentation at 20℃. As a result, Nano-grade inorganic compound liners reduced the sulfur content by 67 % on average, compared to ordinary polyethylene (PE) foam liners. Afterwards SEM-EDS was used to analyze the sulfur content adsorbed by the liners. The findings of this study strongly suggest that decomposition and adsorption of the odor-generating compounds occur more effectively in the newly-developed inorganic nanocomposite liners.