• Title/Summary/Keyword: Slow mixing

Search Result 89, Processing Time 0.026 seconds

NUMERICAL ANALYSIS ON THE MIXING OF A PASSIVE SCALAR IN THE TURBULENT FLOW OF A SMALL COMBUSTOR BY USING LARGE EDDY SIMULATION (큰에디모사법을 이용한 소형 연소기의 난류 유동장 내 스칼라 혼합에 대한 수치해석)

  • Choi, H.S.;Park, T.S.;Suzuki, K.
    • Journal of computational fluids engineering
    • /
    • v.11 no.4 s.35
    • /
    • pp.67-74
    • /
    • 2006
  • The characteristics of turbulent flow and mixing in a small can type combustor are investigated by means of Large Eddy Simulation (LES). Attention is paid for a combustor having a baffle plate with oxidant injection and fuel injection holes and study is made for three cases of different baffle plate configurations. From the result, it is confirmed that mixing is promoted by interaction between the jets during their developing process and large vortical flows generated in the vicinity of the combustor wall or fuel jet front. This particular flow feature is effective to accelerate the slow mixing between fuel and oxidant suffering from low Reynolds number condition in such a small combustor. In particular, the vortical flow region ahead of fuel jet plays an important role for rapid mixing. Discussion is made for the time and space averaged turbulent flow and scalar quantities which show peculiar characteristics corresponding to different vortical flow structures for each baffle plate shapes.

Recovery of ultrafine particles from Chemical-Mechanical Polishing wastewater discharged by the semiconductor industry

  • Tu, Chia-Wei;Wen, Shaw-Bing;Dahtong Ray;Shen, Yun-Hwei
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.715-718
    • /
    • 2001
  • This study uses traditional alum coagulation and sedimentation process to treat CMP wastewater from cleaning after polishing. The primary goal is to successfully recycle both solid fines and water for semiconductor manufacturing. Results indicated that CMP wastewater may be successfully treated to recover clean water and fine particles by alum coagulation. The optimum operating conditions for coagulation are as fellowing: alum dosage of 10 ppm, pH at 5, rapid mixing speed at 800 rpm, 5 min rapid mixing time, and long slow mixing time. The treated water with low turbidity and an average residual aluminum ion concentration of 0.23 ppm may be considered for reuse. The settled sludge after alum coagulation contains mainly SiO$_2$particle with a minor content of aluminum (1.7 wt%) may be considered as raw materials for glass and ceramic industry.

  • PDF

Effect of Coagulation Condition on Coagulation/Ultrafiltration Membrane Process (응집·한외여과 공정에서 응집조건 결정에 관한 연구)

  • Moon, Seong-Yong;Lee, Sang-Hyup;Kim, Seung-Hyun;Moon, Byung-Hyun
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.4
    • /
    • pp.379-384
    • /
    • 2005
  • In this research, coagulation was employed as the pretreatment for membrane process. The effective coagulation conditions were decided after the discussion of different coagulant doses and mixing conditions, etc. Raw water was taken from Nakdong River. The best operation occurred when G value was $230s^{-1}$ and the slow mixing lasted around 5 minutes at G value was $23s^{-1}$. To investigate the optimum coagulant dosage, the optimum organics removal was target as organic removal reduces membrane fouling effectively than particle removal. This result indicated that organics are more important causes than turbidity for membrane fouling. However, turbidity becomes an important factor after certain amount of organic matters is removed.

Electrophysiological and Mechanical Characteristics in Human Ileal Motility: Recordings of Slow Waves Conductions and Contractions, In vitro

  • Ryoo, Seung-Bum;Oh, Heung-Kwon;Moon, Sang Hui;Choe, Eun Kyung;Yu, Sung A;Park, Sung-Hye;Park, Kyu Joo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.19 no.6
    • /
    • pp.533-542
    • /
    • 2015
  • Little human tissue data are available for slow waves and migrating motor complexes, which are the main components of small bowel motility. We investigated the electrophysiological and mechanical characteristics of human ileal motility, in vitro. Ileum was obtained from patients undergoing bowel resection. Electrophysiological microelectrode recordings for membrane potential changes and mechanical tension recordings for contraction from smooth muscle strips and ileal segments were performed. Drugs affecting the enteric nervous system were applied to measure the changes in activity. Slow waves were detected with a frequency of 9~10/min. There were no cross-sectional differences in resting membrane potential (RMP), amplitude or frequency between outer and inner circular muscle (CM), suggesting that electrical activities could be effectively transmitted from outer to inner CM. The presence of the interstitial cell of Cajal (ICC) at the linia septa was verified by immunohistochemistry. Contractions of strips and segments occurred at a frequency of 3~4/min and 1~2/min, respectively. The frequency, amplitude and area under the curve were similar between CM and LM. In segments, contractions of CM were associated with LM, but propagation varied with antegrade and retrograde directions. Atropine, $N^W$-oxide-L-arginine, and sodium nitroprusside exhibited different effects on RMP and contractions. There were no cross-sectional differences with regard to the characteristics of slow waves in CM. The frequency of contractions in smooth muscle strips and ileal segments was lower than slow waves. The directions of propagation were diverse, indicating both mixing and transport functions of the ileum.

Characteristic of Fatigue Crack Behavior on the Mixed-Mode in Aluminum Alloy 5083-O

  • Kim, Gun-Ho;Cho, Kyu-Chun;Lee, Ho-Yeon;Won, Young-Jun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.7
    • /
    • pp.899-906
    • /
    • 2011
  • Generally, load conditions of machine or structure in fatigue destruction is occurred not under single load conditions but under mixed load conditions. However, the experiment under mixing mode is insufficient because of no having test standard to the behavior of crack under mixing mode and variety of test methods, and many tests are required. In this paper measured crack direction path by created figure capture system when a experiment. Also, we studied by comparison the behavior of crack giving the change of stress ratio and inserting beach mark. Through the test under mixing mode, advancing path of crack is indicated that advancing inclined angle ${\Theta}$ (direction of specimen length) has increased depending on the increase of mixed mode impaction. It is indicated that according to the increase of mixed mode loading condition impaction under mixing mode, advancing speed of crack gets slow. Also, we found that inner crack(cross section of specimen) is progressed more rapidly than outer crack based on data through beach mark.

An Analysis of Coherence and Resilience Depending on Materials Mixing Ratio in Elastic Landscape Pavement (조경용 탄성포장의 재료 배합비에 따른 결합력과 탄성분석)

  • Park, Won-Kyu
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.38 no.5
    • /
    • pp.93-101
    • /
    • 2010
  • The demand for elastic pavement, providing comfort for pedestrians is expected to increase continuously but the lack of a standard for materials mixing ratio, that is, the optimal mixing ratio between ERDM chip and polyurethane binder, is still in a trial and error stage. This study aimed at recommending an optimal mixing ratio for elastic landscape pavement through a coherence and resilience test depending on ratio. The test result is outlined as follows. In a tensile strength test, samples B and C indicated a close positive relationship between the binder mixing ratio and tensile strength, indicating that the higher the mixing ratio the higher the tensile strength. In a hardness test, none of samples A, B or C indicated a statistical interrelationship between the binder mixing ratio and hardness. That is, the hardness of the elastic pavement material remained unchanged, irrespective of the binder mixing ratio. In a resilience lest, Samples A and B indicated a close negative interrelation between mixing ratio and resilience, indicating that the higher the mixing ratio, the lower the resilience. Upon analyzing the optimal mixing ratio based on test results, an increase in tensile strength began to slow at a 20% mixing ratio, while resilience began to reduce rapidly at 22%, Thus the optimal range for a mixing ration appeared to be 20~22%. The outcome of this study could to provide guidance for improving the elasticity and stability of elastic pavement.

A STUDY ON CHARACTERISTICS OF EECTRO-OSMOTIC FLOWS UNDER THE LOCAL VARIATION OF THE ELECTRIC FIELD (전기장의 국소변화에 따른 전기삼투 유동 및 혼합 특성해석)

  • Heo H. S.;Jeong J. H.;Sub Y. K.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.27-30
    • /
    • 2005
  • In a microfluidic chips pressure driven flow or electro-osmotic flow has been usually employed to deliver bio-samples. Flow in the chips is usually slow and the mixing performance is poor. A micro-mixer with a rapid mixing is important for practical applications. In this study a newly designed and electro-osmotic driven micro-mixer is proposed. This design is comprised of a channel and a series of metal electrodes periodically attached on the side surface. In this configuration electro-osmotic flows and the stirring effects are simulated three-dimensionally using a commercial code, CFD-ACE. Focus is given the effect on the electro-osmotic flow characteristics under the local variation of the electric field.

  • PDF

Studies on the Homogeneous Precipitiation of Silver Halide (Silver Halide의 均一沈澱法에 關한 硏究)

  • Park, Doo-Won;Oh, Sang O.
    • Journal of the Korean Chemical Society
    • /
    • v.6 no.2
    • /
    • pp.122-124
    • /
    • 1962
  • The silver halide precipitate tends to separate in curdy form of flocculated colloid when it is precipitated by direct mixing of reactant solutions. This type of precipitate has a great tendency to adsorb or occlude foreign ions in the solution.When silver halide in precipitated from homogeneous solution using the slow hydrolysis of Alkyl halide or Ally halide, the precipitate becomes dense, filterable and uniform in particle size which is very advantageous in gravimetric analysis.We found that silver halide precipitates obtained from homogeneous solution with hydrogen halide formed by the hydrolysis of alkyl halide do not give the color change with fluorescein as adsorption indicater, while silver halide precipitates obtained by direct mixing method give sharply pink color which appear to be uniformly distributed through the solution in silver ion excess.

  • PDF

Spray Characteristics Depending Upon Impaction Land Surface Angle Variations (충돌면 경사각도 변화에 따른 분무특성)

  • Kim, C.H.;Kim, J.H.;Park, K.H.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.6
    • /
    • pp.63-71
    • /
    • 1998
  • In a diesel engine the phenomenon of spray impaction on a combustion chamber wall has been taken as an undesirable matter because of the deposition of fuel on the surfaces, and the subsequent slow evaporation and mixing with air resulting in unburned hydrocarbons. Therefore many researches have concentrated on avoiding fuel impaction on surfaces. On the contrary done a number of studies using spray wall impactions in a positive way, which makes the droplets smaller, changes the direction into free spaces far from the wall and also improves mixing with air. In this paper the angle variations of the impaction land sufrace prepared for the injection spray is analysed as a simulative manner. The spray dispersions, vapor distributions and flow fields are compared with impacting angle variation. The results show more angle give more vapor distribution until $15^{\circ}$.

  • PDF

The Size Analysis of Raised Lands Prepared for Spray Impaction in OSKA Typed D.I. Diesel Engine Combustion Chamber (OSKA형 디젤기관 연소실의 충돌면 크기 분석)

  • 김재휘;홍영표;박권하
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.3
    • /
    • pp.82-90
    • /
    • 1996
  • In a diesel engine the phenomenon of spray impaction on a chamber wall has been taken as an undesirable matter because of the deposition of fuel on the surfaces, and the subsequent slow evaporation and mixing with air resulting in unburned hydrocarbons. Therefore many researches have concentrated on avoiding fuel impingement on surfaces. On the contrary done a number of studies using spray wall impactions in a positive way, which makes the droplets smaller, changes the direction into free spaces far from the wall and also improves mixing with air. In this paper the size of the impaction site prepared for the injection spray which is raised from the bottom in the piston bowl center is analysed as both simulative and experimental manner.

  • PDF