• Title/Summary/Keyword: Slot Control

Search Result 310, Processing Time 0.028 seconds

Design of local exhaust ventilation for preventive maintenance in semiconductor fabrication industry using CFD (전산유체역학을 이용한 반도체 제조공정의 PM 전용 후드 설계 연구)

  • Hong, Jwaryung;Koo, Jae-Han;Park, Chang-Sup;Choi, Kwang-Min
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.29 no.2
    • /
    • pp.208-216
    • /
    • 2019
  • Objective: The aim of this study is to control residual chemicals or by-products generated in chambers during preventive maintenance (PM) in the semiconductor manufacturing industry. We designed local exhaust ventilation using computational fluid dynamics (CFD). Methods: The air flow characteristics and capture efficiency between rectangular and slot hoods were compared numerically. The software Fluent 18.1 was used to estimate uniform velocity distribution and capture efficiency for contaminants. A metal from group 15 in the periodic table was released at the bottom of the chamber to simulate emissions. Results: The slot hood had a higher capture efficiency than a rectangular hood under the same conditions because the slot hood provided uniform air flow and higher face velocity. Also, there was no rotating swirl in the plenum for slot, that is why slot had better efficiency than rectangular even though they had similar face velocity. With less than 10 slots, the capture efficiencies for contaminants were nearly 95%. The optimum conditions for a hood to achieve high efficiency was 8 to 10 slots and a face velocity over 1 m/s. Conclusions: Well-designed ventilation systems must consider both efficiency and convenience. For this study, a slot hood that had high capture efficiency and no work disturbance was designed. This will contribute to protection of the worker's health in a PM area and other areas as well. Also, this study confirms the possibility of the application CFD in the semiconductor fabrication industry.

Centralized TDMA Slot Assignment Scheme Based on Traffic Direction for QoS Guarantee in Unmanned Robot Systems (무인로봇체계에서 QoS 보장을 위한 트래픽 방향 기반 중앙집중식 TDMA 슬롯 할당 기법)

  • Han, Jina;Kim, Dabin;Ko, Young-Bae;Kwon, DaeHoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.5
    • /
    • pp.555-564
    • /
    • 2016
  • This paper proposes a time slot allocation scheme for military patrol environments. This proposal comes from analysis of traffic properties in a military patrol environment. In the near future, robots are expected to explore enemy grounds and measure threat, taking the place of human patrol. In order to control such robots, control messages must be extremely accurate. One mistake from the control center could cause a tragedy. Thus, high reliability must be guaranteed. Another goal is to maintain a continual flow of multimedia data sent from patrol robots. That is, QoS (Quality of Service) must be guaranteed. In order to transmit data while fulfilling both attributes, the per-path based centralized TDMA slot allocation scheme is recommended. The control center allocates slots to robots allowing synchronization among robots. Slot allocation collisions can also be avoided. The proposed scheme was verified through the ns-3 simulator. The scheme showed a higher packet delivery ratio than the algorithm in comparison. It also performed with shorter delay time in the downlink traffic transmission scenario than the algorithm in comparison.

A development of Intelligent Parking Control System Using Sensor-based on Arduino

  • LIM, Myung-Jae;JUNG, Dong-Kun;KWON, Young-Man
    • Korean Journal of Artificial Intelligence
    • /
    • v.9 no.2
    • /
    • pp.29-34
    • /
    • 2021
  • In this paper, for efficient parking control, in an Arduino environment, an intelligent parking control prototype was implemented to provide parking control and parking guidance information using HC-SR2O4 and RC522. The main elements of intelligent parking control are vehicle recognition sensors, parking control facilities, and integrated operating software. Whether the vehicle is parked on the parking surface may be confirmed through sensor or intelligent camera image analysis. Parking control equipment products include parking guidance and parking available display devices, vehicle number recognition cameras, and intelligent parking assistance systems. This paper applies and implements ultrasonic sensors and RFID concepts based on Arduino, recognizes registered vehicles, and displays empty spaces. When a vehicle enters a parking space to handle this function, the automatic parking management system distinguishes the registered vehicle from the external vehicle through the RC522 sensor. In addition, after checking whether the parking slot is empty, the HC-SR204 sensor is displayed through the LED so that the driver can visually check it. RFID is designed to check the parking status of the server in real time and provide the driver with optimal route service to the parking slot.

Analysis of Jet-drop Distance from the Multi Opening Slots of Forced-ventilation Broiler House (강제 환기식 육계사 다중 입기 슬롯에서의 입기류 도달거리 분석)

  • Kwon, Kyeong-Seok;Ha, Tae-Hwan;Lee, In-Bok;Hong, Se-Woon;Seo, Il-Hwan;Jessie, P. Bitog
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.2
    • /
    • pp.55-65
    • /
    • 2012
  • In the winter season, when the ventilation system is operating, the fresh cold air from the slot-type openings of broiler house which directly reached the animal zone can cause various problems such as thermal stress, decreasing of feed and water consumption, occurrence of respiratory disease, and etc. Therefore it is very important to control the trajectory of aero-flow from the slot openings to induce an efficient thermal heat change. Jet-drop distance model was proposed to predict and control the jet-trajectory. However their study was restricted due to the small scaled model and difficulties of measuring the Jet-drop distance. In this study, CFD was applied to analyze qualitatively and quantitatively the jet-drop distance in a real broiler house. The various variables were considered such as installed slot-angle, designed ventilation rate, and the outdoor ambient temperature. From the present study, two linear-regression models using the Jet-drop factor and corrected Archimedes number, and their R-squared values 0.744 and 0.736, respectively, were used. From this study, the applicability of CFD on the analysis of Jet-drop distance model was confirmed.

Analysis of Electromagnetic Field in Triangular Slot Antenna

  • Pomsathit, A.;Anantrasirichai, N.;Wakabayashi, T.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1672-1675
    • /
    • 2003
  • Microstrip antennas have many applications in wireless communication system. This paper propose a analytical far-field pattern of radiation for application of the wireless communication. The triangular slot antenna fed by micorstrip line is proposed at resonance frequency 10 GHz. The simulation results of the electromagnetic field radiation pattern, S parameter, characteristic of input impedance are obtain by using the finite difference time domain (FDTD) method. The analytical space in FDTD analysis are $50{\times}171{\times}120$ cells with the cell dimension ${\Delta}x=0.152\;mm$, ${\Delta}y={\Delta}z=0.15\;mm$.

  • PDF

Design of in-line Six-pole triple-mode narrow-band channel filter using iris optimization method (아이리스 최적화 기법을 이용한 In-line형 6극 삼중모드 협대역 채널여파기의 설계)

  • 정근욱;이재현;염인복;박광량;김재명
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.33A no.6
    • /
    • pp.62-71
    • /
    • 1996
  • In this paper, we design tripel-mode channel filter using iris optimization technique and investigate its response. The cavity diameter is determined to resonate three orthogonal modes coincidently and inter-cavity iris is optimized in which one slot control one TE-TE mode and other TM-TM mode couplings simultaneously. Since the electric/magnectic field is variable due to slot position, the center position of the slot which handle coupling coefficients of two modes should be designe dwith optimizatin technique presented here. The implemented triple-mode filter in this paper saves its mass and volume upto 33% relating to the dual-mode filter, caused by the reduced number of cavities.

  • PDF

A study on the maximum thrust of the Linear Pulse Motor for the head driver (헤드 구동용 Linear Pulse Motor의 최대 추력에 관한 연구)

  • Kim, Jung-Gyo;Jun, Hee-Deuk;Lee, Ju
    • Proceedings of the KIEE Conference
    • /
    • 2002.11d
    • /
    • pp.70-72
    • /
    • 2002
  • LPM that is used for head driver is problem of miniaturization of construction and cost. This can be achieved by most suitable shape decision. and suitable selection of control system. Specially, in LPM that Full step is mm$\sim$um unit. the large change of thrust receives much effect by tooth number per pole. tooth width and slot width about change of the air gap length. Therefore, this paper presents LPM that use for suitable head driver to reduce of the structure and the cost. to generate maximum thrust of LPM, and finds the proportion of the tooth pitch to tooth width and the slot width about change of the air gap length through FEM analysis. Also, applying different tooth width and slot width that is given as analysis result. this paper presented model that thrust is improved.

  • PDF

A Study on the Improvement of Torque Characteristics of D.C Brushless Motor by Auxiliary Slot Method (보조 슬롯법에 의한 D.C Brushless Motor의 토오크특성 개선에 관한 연구)

  • Im, Dal-Ho;Kim, Saeng-Su;Son, Yung-Kyu
    • Proceedings of the KIEE Conference
    • /
    • 1988.07a
    • /
    • pp.83-86
    • /
    • 1988
  • In all sorts of primary factor which produce torque ripple of d.c brushless motor cogging torque which is generated from relation between permanent magnet rotor and salient pole cannot controled by external control system. So in this paper cogging torque is analysed by simple method in which slot fuctuion is introduced. And for reducing counterplan of cogging torque d.c brushless motor which plot auxiliary slot by inequality interval is proposed. Thus the quantitative torque characteristics of new motor which designed by this method is analysed by F.E.M and validity of this new design is proved.

  • PDF

Performance Analysis of modified PRMA: PRHMA(Packet Reservation Hold Multiple Access) (변형된 PRMA 방식인 PRHMA의 성능분석)

  • Kim Hwan Ui;Kim Doug Nyun
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.1 no.2
    • /
    • pp.122-130
    • /
    • 2000
  • This paper mainly deals with the modified version of conventional PRMA(Packet Reservation Multiple Access). In the existing PRMA schemes, the occupied slot in the initial access state is not allowed to be reserved in the silent period and retrial of gaining the slot access has to pay additional packet dropping. Whereas in the modified model, we propose to utilize a control minislot that maintains slot reservation and this prevents additional packet drop occurrence since initial access, and this slightly improves the system performance.

  • PDF

Investigation on Performance Characteristics of IPM for Electric Vehicles Considering Driving Conditions and Pole-Slot Combinations

  • Seo, Jangho
    • Journal of Magnetics
    • /
    • v.18 no.3
    • /
    • pp.268-275
    • /
    • 2013
  • This paper shows the characteristics of performance for interior permanent magnet machine (IPM) considering driving conditions such as maximum torque per ampere (MTPA) and flux-weakening control especially in terms of harmonic loss. In particular, based on finite element analysis (FEA), permanent magnet (PM) eddycurrent loss and the harmonic iron loss have been computed where the models have been intentionally designed to identify the effects of pole-slot combinations on the loss while maintaining the required power for electric vehicle. From the analysis results, it was shown that the rotor iron loss and PM eddy-current loss of machine employing fractional slot winding are extremely large at load condition. Furthermore, it was revealed that the harmonic iron loss at high-speed operation is mainly distributed over stator teeth and rotor surface, which may aggravate cooling system of the rotor structure in the vehicle.