• 제목/요약/키워드: Sloshing mode

검색결과 31건 처리시간 0.02초

수평으로 놓인 배플형 연료탱크의 슬로싱 고유거동에 관한 유한요소 해석 (Finite Element Analysis of Sloshing Eigen Behavior in Horizontal Baffled Fuel Tank)

  • 조진래;하세윤;이홍우;박태학;이우용
    • 한국전산구조공학회논문집
    • /
    • 제15권4호
    • /
    • pp.619-628
    • /
    • 2002
  • 본 논문은 배플을 설치한 수평으로 놓인 원통형 탱크내 슬로싱 고유진동에 대한 유한요소 해석을 다룬다. 지배방정식으로 포텐셜 이론을 기반으로 한 라플라스 방정식을 적용한다. 이 문제를 선형의 등매개 요소를 적용한 유한요소법을 이용해 해석한다. 탱크와 배플은 강체로 가정하였으며, 배플의 효과 구현은 배플의 설치 위치에 절점을 두 개로 분리함으로써 얻을 수 있다. 고유주파수와 고유모드의 추출을 위하여 Lanczos 변환법 및 Jacobi 반복법을 도입하였다. 종진동과 횡진동 모드에 대한 수치 해석결과가 참고 문헌과 비교해 볼 때 잘 일치함을 알 수 있었다. 또한 유체 높이, 배플 개수, 내공 크기, 배플 위치 등의 파라메트릭 해석을 통하여 슬로싱 특성 및 링형 배플의 영향을 고찰하였다.

Study on Moonpool Resonance Effect on Motion of Modern Compact Drillship

  • Yang, Seung Ho;Yang, Young Jun;Lee, Sang Beom;Do, Jitae;Kwon, Sun Hong
    • 한국해양공학회지
    • /
    • 제27권3호
    • /
    • pp.53-60
    • /
    • 2013
  • A drillship is a representative floating offshore installation. The boom in oil and gas field development has dramatically increased the demands for drillships. Drillships have a moonpool in the center area of the ship for the purpose of drilling. This moonpool has an effect on the seakeeping performance of a drillship in the vicinity of the resonance frequency. Because of the moonpool, drillships act in different resonance modes, called the sloshing mode and piston mode. The objective of this study was to find the moonpool effect on the motion of a drillship through the motion analysis of a currently operating modern compact drillship. The predicted resonance frequencies based on Molin's theoretical formula, Fukuda's empirical formula, and BEM-based numerical analysis are compared. The accuracy of the predictions using the theoretical and empirical formulas is compared with the numerical analysis and evaluated. In the case of the piston mode, the difference between the resonance frequency from theoretical formula and the resonance frequency from the numerical analysis is analyzed. The resonance frequency formula for more a complex moonpool geometry such as a moonpool with a cofferdam is necessarily emphasized.

환원판 덮개를 갖는 원통형 연료탱크의 진동해석 (Vibration of Liquid-filled Cylindrical Storage Tank with an Annular Plate Cover)

  • 김영완
    • 한국소음진동공학회논문집
    • /
    • 제13권10호
    • /
    • pp.751-759
    • /
    • 2003
  • The theoretical method is developed to investigate the vibration characteristics of the sloshing and bulging mode for the circular cylindrical storage tank with an annular plate on free surface. The cylindrical tank is filled with an inviscid and incompressible liquid. The liquid domain is limited by a rigid cylindrical surface and a rigid flat bottom. As the effect of free surface waves Is taken into account in the analysis, the bulging and sloshing modes are studied. The solution for the velocity potential of liquid movement is assumed as a suitable harmonic function that satisfies Laplace equation and the relevant boundary conditions. The Rayleigh-Ritz method is used to derive the frequency equation of the cylindrical tank. The effect of Inner-to-outer radius ratio and thickness of annular plate and liquid volume on vibration characteristics of storage tank is studied. The finite element analysis is performed to demonstrate the validity of present theoretical method.

Effect of Pretension on Moored Ship Response

  • Sajjan, Sharanabasappa C.;Surendran, S.
    • International Journal of Ocean System Engineering
    • /
    • 제3권4호
    • /
    • pp.175-187
    • /
    • 2013
  • Moonpools are vertical wells in a floating body used onboard many types of vessels like Exploration and drilling vessels, Production barges, Cable-laying vessels, Rock dumping vessels, Research and offshore support vessels. Moonpool gives passage to underwater activities for different types of ships as per their mission requirements. It is observed that inside a moonpool considerable relative motions may occur, depending on shape, depth of the moonpool and on the frequency range of the waves to which the ship is exposed. The vessel responses are entirely different in zero and non-zero Froude number. Former situation is paid attention in this study as the mission requirement of the platform is to be in the particular location for long period of operation. It is well known that there are two modes of responses depending on the shape of the moonpool viz., piston mode for square shape and sloshing mode for rectangular shapes with different aspect ratios of opening like 1:1.5 and 1:2 ratios. Circular shaped moonpool is also tested for measuring the responses. The vessel moored using heavy lines are modelled and tested in the wave basin. The pretensions of the lines are varied by altering the touchdown points and the dynamic tensions on the lines are measured. The different modes of oscillations of water column are measured using wave gauge and the vessel response at a particular situation is determined. RAOs calculated for various situations provide better insight to the designer.

Model tests on the moored vessel with different moonpool shapes

  • Sajjan, Sharanabasappa C.;Surendran, S.
    • Ocean Systems Engineering
    • /
    • 제3권2호
    • /
    • pp.137-147
    • /
    • 2013
  • Moonpools are vertical wells in a floating body used onboard many types of vessels like cable-laying vessels and offshore support vessels. Moonpool gives passage to underwater activities for different types of ships as per their mission requirements. It is observed that inside a moonpool considerable relative motions may occur, depending on shape, depth of the moonpool and on the frequency range of the waves to which the ship is exposed. The vessel responses are entirely different in zero and non-zero Froude number. Former situation is paid attention in this study as the mission requirement of the platform is to be in the particular location for long period of operation. It is well known that there are two modes of responses depending on the shape of the moonpool viz., piston mode for square shape and sloshing mode for rectangular shapes with different aspect ratios of opening like 1:1.5 and 1:2 ratios. Circular shaped moonpool is also tested for measuring the responses. The vessel moored using heavy lines are modeled and tested in the wave basin. The moored lines are provided with pre-tension and the dynamic tensions on the lines are measured. The different modes of oscillations of water column are measured using wave gauge and the vessel response at a particular situation is determined. RAOs determined for various situations provide better insight to the designer. The experiments done in the wave basin may also be compared with a software package meant for handling moored floating bodies.

Experimental study on moonpool resonance of offshore floating structure

  • Yang, Seung-Ho;Kwon, Sun-Hong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제5권2호
    • /
    • pp.313-323
    • /
    • 2013
  • Offshore floating structures have so-called moonpool in the centre area for the purpose of drilling, installation of subsea structures, recovery of Remotely-Operated Vehicle (ROV) and divers. However, this vertical opening has an effect on the operating performance of floating offshore structure in the vicinity of moonpool resonance frequency; piston mode and sloshing mode. Experimental study based on model test was carried out. Moonpool resonance of floating offshore structure on fixed condition and motion free condition were investigated. And, the effect of cofferdam which is representative inner structure inside moonpool was examined. Model test results showed that Molin's theoretical formula can predict moonpool resonance on fixed condition quite accurately. However, motion free condition has higher resonance frequency when it is compared with that of motion fixed. The installation of cofferdam moves resonance frequency to higher region and also generates secondary resonance at lower frequency. Furthermore, it was found that cofferdam was the cause of generating waves in the longitudinal direction when the vessel was in beam sea.

Effect of natural frequency modes on sloshing phenomenon in a rectangular tank

  • Jung, Jae Hwan;Yoon, Hyun Sik;Lee, Chang Yeol
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제7권3호
    • /
    • pp.580-594
    • /
    • 2015
  • Liquid sloshing in two-dimensional (2-D) and three-dimensional (3-D) rectangular tanks is simulated by using a level set method based on the finite volume method. In order to examine the effect of natural frequency modes on liquid sloshing, we considered a wide range of frequency ratios ($0.5{\leq}fr{\leq}3.2$). The frequency ratio is defined by the ratio of the excitation frequency to the natural frequency of the fluid, and covers natural frequency modes from 1 to 5. When fr = 1, which corresponds to the first mode of the natural frequency, strong liquid sloshing reveals roof impact, and significant forces are generated by the liquid in the tank. The liquid flows are mainly unidirectional. Thus, the strong bulk motion of the fluid contributes to a higher elevation of the free surface. However, at fr = 2, the sloshing is considerably suppressed, resulting in a calm wave with relatively lower elevation of the free surface, since the waves undergo destructive interference. At fr = 2, the lower peak of the free surface elevation occurs. At higher modes of $fr_3$, $fr_4$, and $fr_5$, the free surface reveals irregular deformation with nonlinear waves in every case. However, the deformation of the free surface becomes weaker at higher natural frequency modes. Finally, 3-D simulations confirm our 2-D results.

벽면의 유연성을 고려한 액체저장탱크의 동적해석 (Seismic Analysis of Liquid Storage Tanks Considering Shell Flexibility)

  • 이창근;윤정방
    • 대한토목학회논문집
    • /
    • 제7권4호
    • /
    • pp.21-29
    • /
    • 1987
  • 직립원통형 액체저장탱크가 지진하중을 받을 때, 벽면 유연성이 벽면에 작용하는 유동압력에 미치는 영향에 대해 연구하였다. 탱크 구조물은 환(ring)형 유한요소를 사용하여 이상화하였으며, 유동에 대한 해는 Laplace 방정식을 이용하여 구하였다. 쉘-유체계의 운동방정식은 자유표면거동과 벽면유연성의 상관효과까지 포함하여 구성하였으며, 이에 따른 쉘 거동과 자유표면거동에 대한 자유진동모우드를 해석하는 방법이 개발되었다. 예제해석으로는, 구조적 특성이 다른 몇개의 저장탱크에 대해, 응답스펙트럼 해석법과 시간영역 해석법을 사용하여 동적응답을 구하였고, 그 결과들을 비교 분석하였다.

  • PDF

DYNAMIC CHARACTERISTICS OF A PARTIALLY FLUIDFILLED CYLINDRICAL SHELL

  • Jhung, Myung-Jo;Yu, Seon-Oh;Lim, Yeong-Taek
    • Nuclear Engineering and Technology
    • /
    • 제43권2호
    • /
    • pp.167-174
    • /
    • 2011
  • A pressurizer in a small integral type pressurized water reactor is located inside the upper region of the reactor vessel, and uses a space between the upper head of the reactor vessel and the upper region of the upper guide structure which is partially filled with fluid depending on the operating power. This new design requires a comprehensive investigation of vibration characteristics. This study investigates the modal characteristics of a pressurizer which uses a simplified cylindrical shell model, focusing on how having fluid in the shell affects vibration and response characteristics. In addition, an analysis of sloshing is performed and the response characteristics are addressed.

다양한 수평 수직 단면적비를 가지는 LCVA의 진동특성 평가 (Vibration Characteristics of Liquid Column Vibration Absorber with Various Area Ratio)

  • 정란;이정우;박현진;이상현;우성식;조승호
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 추계학술대회논문집
    • /
    • pp.121-125
    • /
    • 2007
  • LCVA has an advantage that its natural frequency can be easily controlled by changing the area ratio of the vertical column and horizontal part. The previous studies investigated the dynamic characteristics of the LCVA under harmonic load. This study experimentally obtained the first and second mode natural frequencies of the LCVA from shaking table tests using white noise and compared the values with the ones by previous study. Test results show that the measured first mode natural frequency of the LCVA is larger than the calculated one when the area ratio is larger than 1. The second mode frequency increases with the increasing area ratio, which is due to the sloshing motion effect resulting from the large area of the vertical column.

  • PDF