• Title/Summary/Keyword: Sloshing

Search Result 338, Processing Time 0.023 seconds

A Fundamental Study on Lower Duct Flow of passive anti-rolling tanks System (수동형 감요수조의 하부덕트 유동에 관한 기초연구)

  • Lee, Cheol-Jae;Lim, Jeong-Sun;Jung, Han-Sic;Jung, Hyo-Min
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2006.11a
    • /
    • pp.265-269
    • /
    • 2006
  • Anti-Roll Tanks, also called Sloshing Tanks, is a rather common and sometimes an efficient method of limiting the roll angles. The important parameters, when considering using anti-roll tanks, are positioning, size, duct area, flow control device etc. Measurement by the PIV(Particle Image Velocimetry) was conducted to investigate the flow characteristics around control damper and inlet area of duct for three kind of inclined angle $(\alpha=0^*,\;10^*\;and\;20^*)$. Flow behaviors such as instantaneous and time-mean velocity vectors are investigated. Furthermore, to reveal boundaries between flowing and stagnant zones and to extract velocity profiles at any selected sections of the lower duct for passive anti-rolling tanks system.

  • PDF

Fluid-structure-soil interaction analysis of cylindrical liquid storage tanks subjected to horizontal earthquake loading

  • Kim, Jae-Min;Chang, Soo-Hyuk;Yun, Chung-Bang
    • Structural Engineering and Mechanics
    • /
    • v.13 no.6
    • /
    • pp.615-638
    • /
    • 2002
  • This paper presents a method of seismic analysis for a cylindrical liquid storage structure considering the effects of the interior fluid and exterior soil medium in the frequency domain. The horizontal and rocking motions of the structure are included in this study. The fluid motion is expressed in terms of analytical velocity potential functions, which can be obtained by solving the boundary value problem including the deformed configuration of the structure as well as the sloshing behavior of the fluid. The effect of the fluid is included in the equation of motion as the impulsive added mass and the frequency-dependent convective added mass along the nodes on the wetted boundary of the structure. The structure and the near-field soil medium are represented using the axisymmetric finite elements, while the far-field soil is modeled using dynamic infinite elements. The present method can be applied to the structure embedded in ground as well as on ground, since it models both the soil medium and the structure directly. For the purpose of verification, earthquake response analyses are performed on several cases of liquid tanks on a rigid ground and on a homogeneous elastic half-space. Comparison of the present results with those by other methods shows good agreement. Finally, an application example of a reinforced concrete tank on a horizontally layered soil with a rigid bedrock is presented to demonstrate the importance of the soil-structure interaction effects in the seismic analysis for large liquid storage tanks.

Earthquake-Induced Wall Pressure Response Analysis of a Square Steel Liquid Storage Tank (지진하중을 받는 정사각형 강재 액체저장탱크의 벽면 압력 응답 해석)

  • Yun, Jang Hyeok;Kang, Tae Won;Yang, Hyunik;Jeon, Jong-Su
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.22 no.5
    • /
    • pp.261-269
    • /
    • 2018
  • This study examines earthquake-induced sloshing effects on liquid storage tanks using computation fluid dynamics. To achieve this goal, this study selects an existing square steel tank tested by Seismic Simulation Test Center at Pusan National University as a case study. The model validation was firstly performed through the comparison of shaking table test data and simulated results for the water tank subjected to a harmonic excitation. For a realistic estimation of the wall pressure response of the water tank, three recorded earthquakes with similar peak ground acceleration are applied:1940 El Centro earthquake, 2016 Gyeongju earthquake, and 2017 Pohang earthquake. Wall pressures monitored during the dynamic analyses are examined and compared for different earthquake motions and monitoring points, using power spectrum density. Finally, the maximum dynamic pressure for three earthquakes is compared with the design pressure calculated from a seismic design code. Results indicated that the maximum pressure from the El Centro earthquake exceeds the design pressure although its peak ground acceleration is less than 0.4 g, which is the design acceleration. On the other hand, the maximum pressure due to two Korean earthquakes does not reach the design pressure. Thus, engineers should not consider only the peak ground acceleration when determining the design pressure of water tanks.

A NUMERICAL SIMULATION METHOD FOR FREE SURFACE FLOWS NEAR MOVING BODIES IN A FIXED RECTANGULAR GRID SYSTEM (고정된 직사각형 격자계에서 움직이는 물체주위 자유수면유동 계산을 위한 수치기법의 개발)

  • Jeong, K.L.;Lee, Y.G.;Ha, Y.J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.395-406
    • /
    • 2011
  • In this research a numerical simulation method is developed for moving body in free surface flows using fixed staggered rectangular grid system. The non-linear free surface near the body is defined by marker-density method. The body boundary is defined by line segment connecting the points where the body surface and grid line meet. Continuity equation and Navier-Stokes equations are used as governing equations and the equations are coupled with two-step projection method. The velocities and pressures of body boundary and free surface cells are calculated with simultaneous iterative method. To treat a body movement in a fixed grid system, the volume displaced by moving body is added to the divergence of the body boundary cell. For the verification of the present numerical method. vortex shedding period of advancing cylinder is calculated and the period is compared with existing experiment results. Moreover, added mass and damping coefficients of a vertically excited box are calculated and the computed results are compared with published experiment results. Impulsive pressure and water level variation due to sloshing phenomenon are simulated and the results are compared with published experiment results. Varying the plunger shape, the waves generated by plunging type wave maker are compared with the 2nd order Stokes wave theory The plunger shape generating the wave that shows the best agreement with the theory is represented.

  • PDF

Strength Assessment of LNG CCS using Strength Analysis Method for Composite Materials (직교이방성 복합재료의 극저온 재료 물성치를 고려한 LNG CCS의 강도 평가에 관한 연구)

  • Jeong, Han Koo;Yang, Young Soon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.2
    • /
    • pp.114-121
    • /
    • 2014
  • Liquefied natural gas(LNG) cargo containment system(CCS) has the primary function of ensuring both adequate structural safety with respect to sloshing load which is defined as a violent behaviour of the liquid contents in CCS due to external forced motions and thermal insulation keeping natural gas below its boiling point. Among different LNG CCS types such as independent B-type and membrane ones, Mark III CCS is considered in this paper to perform its strength assessment. Mark III CCS plate is designed and constructed by stacking various non-metallic engineering materials such as plywood, triplex, reinforced PU foam that are supported by series of mastic upon inner steel hull structure. From the viewpoint of structural analysis, this plated structure is treated as a laminated composite structure showing complex structural behaviour under external load. Advanced finite element models of Mark III CCS plate is generated and used in conjunction with ultimate strength based failure criteria from laminated composite mechanics for the strength assessment. The strength assessment is performed within the initial failure state of Mark III CCS plate. Results provide failure details such as failure locations and loads. Finally obtained results are reviewed using the loads from acceptance criteria suggested by classification.

Performance Test of a Tuned Liquid Mass Damper installed in a Real-Scaled Structure (실물크기 구조물에 설치된 동조액체질량감쇠기의 성능실험)

  • Heo, Jae-Sung;Park, Eun-Churn;Lee, Sung-Kyung;Lee, Sang-Hyun;Kim, Hong-Jin;Jo, Ji-Seong;Cho, Bong-Ho;Joo, Seok-Jun;Min, Kyung-Won
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.2
    • /
    • pp.161-168
    • /
    • 2008
  • In this paper, a tuned liquid mass damper(TLMD) was proposed and experimentally investigated on its control performance, which can control bi-axial responses of building structures by using only one device. The proposed TLMD controls the structural response in a specific one direction by using a liquid sloshing of TLCD. Also, the TLMD reduces the response of structures in the other orthogonal direction by behaving as a TMD that uses mass of the container itself and liquid within container of TLCD installed on linear motion guides. Force-vibration tests on a real-sized structure installed with the TLMD were performed to verify its independent behavior in two orthogonal directions. Test results showed that the responses of a structure were considerably reduced by using the proposed TLMD and its usefulness for structural control in two orthogonal directions.

Wet Drop Impact Response Analysis of CCS in Membrane Type LNG Carriers -II : Consideration of Effects on Impact Response Behaviors- (멤브레인형 LNG선 화물창 단열시스템의 수면낙하 내충격 응답해석 -II : 내충격 응답거동에 미치는 영향 고찰-)

  • Lee, Sang-Gab;Hwang, Jeong-Oh;Kim, Wha-Soo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.6
    • /
    • pp.735-749
    • /
    • 2008
  • For the development of the original technique of structural safety assessment of Cargo Containment System(CCS) in membrane type LNG carriers, it is necessary to understand the characteristics of dynamic response behavior of CCS structure under sloshing impact pressure. In the previous study, the wet drop impact response analyses of CCS structure in membrane Mark III type LNG carriers were carried out by using Fluid-Structure Interaction(FSI) analysis technique of LS-DYNA code, and were also validated through a series of wet drop experiments for the enhancement of more accurate shock response analysis technique. In this study, the characteristics of structural shock response behaviors of CCS structure were sufficiently figured out by careful examinations of the effects of specimen weight, drop height, incident angle, corrugation and stiffness of inner hull on its shock response behaviors. The shock response analysis of upward shooting fluid to inner hull was performed, and the reason of faster strain response than shock pressure one was also figured out.

Modified Gurson Model to Describe Non-linear Compressive Behaviour of Polyurethane Foam with Considering Density Effect (폴리우레탄 폼의 비선형 압축거동을 모사하기 위한 밀도 영향이 고려된 수정 Gurson 모델의 제안)

  • Lee, Jeong-Ho;Park, Seong-Bo;Kim, Seul-Kee;Bang, Chang-Seon;Lee, Jae-Myung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.5
    • /
    • pp.543-551
    • /
    • 2015
  • Polyurethane Foam(PUF), a outstanding thermal insulation material, is used for various structures as being composed with other materials. These days, PUF composed with glass fiber, Reinforced PUF(R-PUF), is used for a insulation system of LNG Carrier and performs function of not only the thermal insulation but also a structural member for compressive loads like a sloshing load. As PUF is a porous material made by mixing and foaming, mechanical properties depend on volume fraction of voids which is a dominant parameter on density. Thus, In this study, density is considered as the effect parameter on mechanical properties of Polyurethane Foam, and mechanical behavior for compression of the material is described by using modified Gurson damage model.

Dynamic Analysis of AP1000 Shield Building Considering Fluid and Structure Interaction Effects

  • Xu, Qiang;Chen, Jianyun;Zhang, Chaobi;Li, Jing;Zhao, Chunfeng
    • Nuclear Engineering and Technology
    • /
    • v.48 no.1
    • /
    • pp.246-258
    • /
    • 2016
  • The shield building of AP1000 was designed to protect the steel containment vessel of the nuclear reactor. Therefore, the safety and integrity must be ensured during the plant life in any conditions such as an earthquake. The aim of this paper is to study the effect of water in the water tank on the response of the AP1000 shield building when subjected to three-dimensional seismic ground acceleration. The smoothed particle hydrodynamics method (SPH) and finite element method (FEM) coupling method is used to numerically simulate the fluid and structure interaction (FSI) between water in the water tank and the AP1000 shield building. Then the grid convergence of FEM and SPH for the AP1000 shield building is analyzed. Next the modal analysis of the AP1000 shield building with various water levels (WLs) in the water tank is taken. Meanwhile, the pressure due to sloshing and oscillation of the water in the gravity drain water tank is studied. The influences of the height of water in the water tank on the time history of acceleration of the AP1000 shield building are discussed, as well as the distributions of amplification, acceleration, displacement, and stresses of the AP1000 shield building. Research on the relationship between the WLs in the water tank and the response spectrums of the structure are also taken. The results show that the high WL in the water tank can limit the vibration of the AP1000 shield building and can more efficiently dissipate the kinetic energy of the AP1000 shield building by fluid-structure interaction.

Mechanical and Thermal Characteristics of Polyurethane Foam with Two Different Reinforcements and the Effects of Ultrasonic Dispersion in Manufacturing (이종 강화재를 첨가한 폴리우레탄 폼의 기계적 및 열적 특성과 제작 시 초음파 분산의 영향)

  • Kim, Jin-Yeon;Kim, Jeong-Dae;Lee, Jae-Myung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.6
    • /
    • pp.515-522
    • /
    • 2019
  • Since Liquefied Natural Gas (LNG) is normally carried at 1.1 bar pressure and at -163℃, special Cargo Containment System (CCS) are used. As LNG carrier is becoming larger, typical LNG insulation systems adopt a method to increase the thickness of insulation panel to reduce sloshing load and Boil-off Rate (BOR). However, this will decrease LNG cargo volume and increase insulation material costs. In this paper, silica aerogel, glass bubble were synthesized in polyurethane foam to increase volumetric efficiency by improving mechanical and thermal performance of insulation. In order to increase dispersibility of particles, ultrasonic dispersion was used. Dynamic impact test, quasi-static compression test at room temperature (20℃) and cryogenic temperature (-163℃) was evaluated. To evaluate the thermal performance, the thermal conductivity at room temperature (20℃) was measured. As a result, specimens without ultrasonic dispersion have a little effect on strength under the compressive load, although they show high mechanical performance under the impact load. In contrast, specimens with ultrasonic dispersion have significantly increased impact strength and compressive strength. Recently, as the density of Polyurethane foam (PUF) has been increasing, these results can be a method for improving the mechanical and thermal performance of insulation panel.