• Title/Summary/Keyword: Slope-Aspect 알고리즘

Search Result 12, Processing Time 0.023 seconds

Calculating the Actual Surface Area for Gangneung Forest Fire Area Using Slope-Aspect Algorithm (Slope-Aspect 알고리즘을 활용한 강릉시 산불 피해지역 실표면적 산출 방법)

  • Jeong, JongChul
    • Journal of Cadastre & Land InformatiX
    • /
    • v.52 no.1
    • /
    • pp.95-104
    • /
    • 2022
  • This study aims to find the exact area of the forest fire in Okgye-myeon, Gangneung, April 4, 2019. Since there is a gradient in our country's forests, we should find a surface area that takes into account The 5th numerical clinical map provided by the DEM and the Korea Forest Service provided by the National Geographic Information Service was used. In DEM, the center point of each pixel was created and all points were connected. The length of the connecting line is determined by the spatial resolution of the pixel and the cosine value, and the surface area is obtained along with the height value, which is called the Slope-Aspect algorithm. The surface area and floor area of the forest were shown according to the tree species and types of forest, and their quantitative numerical differences proved the validity of this study.

Topographic Analysis of Landslides in Umyeonsan (우면산 산사태 발생 지점의 지형분석)

  • Ko, Suk Min;Lee, Seung Woo;Yune, Chan-Young;Kim, Gihong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.32 no.1
    • /
    • pp.55-62
    • /
    • 2014
  • In this study, we investigated the landslides area which occurred in Umyeonsan in 2011 and collected landslide location data. Using this field data with aerial photos and LiDAR data which is obtained before and after disaster event, we analyzed the landslide occurrence frequency per unit area about various topographic characteristics. In case of slope, we compared two kind of slopes which are calculated with Neighborhood algorithm and maximum slope algorithm. Also we used aspect, elevation, profile curvature and planform curvature in topographic analysis of landslide occurrence locations. As a result, the region of which maximum slope is $40^{\circ}-45^{\circ}$ is relatively hazardous in landslide. If the perpendicular surface to the direction of the maximum slope is concave, it is more hazardous than other case.

A Study on the Precise Lineament Recovery of Alluvial Deposits Using Satellite Imagery and GIS (충적층의 정밀 선구조 추출을 위한 위성영상과 GIS 기법의 활용에 관한 연구)

  • 이수진;석동우;황종선;이동천;김정우
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2003.04a
    • /
    • pp.363-368
    • /
    • 2003
  • We have successfully developed a more effective algorithm to extract the lineament in the area covered by wide alluvial deposits characterized by a relatively narrow range of brightness in the Landsat TM image, while the currently used algorithm is limited to the mountainous areas. In the new algorithm, flat areas mainly consisting of alluvial deposits were selected using the Local Enhancement from the Digital Elevation Model (DEM). The aspect values were obtained by 3${\times}$3 moving windowing of Zevenbergen & Thorno's Method, and then the slopes of the study area were determined using the aspect values. After the lineament factors in the alluvial deposits were revealed by comparing the threshold values, the first rank lineament under the alluvial deposits were extracted using the Hough transform In order to extract the final lineament, the lowest points under the alluvial deposits in a given topographic section perpendicular to the first rank lineament were determined through the spline interpolation, and then the final lineament were chosen through Hough transform using the lowest points. The algorithm developed in this study enables us to observe a clearer lineament in the areas covered by much larger alluvial deposits compared with the results extracted using the conventional existing algorithm. There exists, however, some differences between the first rank lineament, obtained using the aspect and the slope, and the final lineament. This study shows that the new algorithm more effectively extracts the lineament in the area covered with wide alluvlal deposits than in the areas of converging slope, areas with narrow alluvial deposits or valleys.

  • PDF

A Study for Estimation of High Resolution Temperature Using Satellite Imagery and Machine Learning Models during Heat Waves (위성영상과 머신러닝 모델을 이용한 폭염기간 고해상도 기온 추정 연구)

  • Lee, Dalgeun;Lee, Mi Hee;Kim, Boeun;Yu, Jeonghum;Oh, Yeongju;Park, Jinyi
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_4
    • /
    • pp.1179-1194
    • /
    • 2020
  • This study investigates the feasibility of three algorithms, K-Nearest Neighbors (K-NN), Random Forest (RF) and Neural Network (NN), for estimating the air temperature of an unobserved area where the weather station is not installed. The satellite image were obtained from Landsat-8 and MODIS Aqua/Terra acquired in 2019, and the meteorological ground weather data were from AWS/ASOS data of Korea Meteorological Administration and Korea Forest Service. In addition, in order to improve the estimation accuracy, a digital surface model, solar radiation, aspect and slope were used. The accuracy assessment of machine learning methods was performed by calculating the statistics of R2 (determination coefficient) and Root Mean Square Error (RMSE) through 10-fold cross-validation and the estimated values were compared for each target area. As a result, the neural network algorithm showed the most stable result among the three algorithms with R2 = 0.805 and RMSE = 0.508. The neural network algorithm was applied to each data set on Landsat imagery scene. It was possible to generate an mean air temperature map from June to September 2019 and confirmed that detailed air temperature information could be estimated. The result is expected to be utilized for national disaster safety management such as heat wave response policies and heat island mitigation research.

Building a Model for Estimate the Soil Organic Carbon Using Decision Tree Algorithm (의사결정나무를 이용한 토양유기탄소 추정 모델 제작)

  • Yoo, Su-Hong;Heo, Joon;Jung, Jae-Hoon;Han, Su-Hee
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.18 no.3
    • /
    • pp.29-35
    • /
    • 2010
  • Soil organic carbon (SOC), being a help to forest formation and control of carbon dioxide in the air, is found to be an important factor by which global warming is influenced. Excavating the samples by whole area is very inefficient method to discovering the distribution of SOC. So, the development of suitable model for expecting the relative amount of the SOC makes better use of expecting the SOC. In the present study, a model based on a decision tree algorithm is introduced to estimate the amount of SOC along with accessing influencing factors such as altitude, aspect, slope and type of trees. The model was applied to a real site and validated by 10-fold cross validation using two softwares, See 5 and Weka. From the results given by See 5, it can be concluded that the amount of SOC in surface layers is highly related to the type of trees, while it is, in middle depth layers, dominated by both type of trees and altitude. The estimation accuracy was rated as 70.8% in surface layers and 64.7% in middle depth layers. A similar result was, in surface layers, given by Weka, but aspect was, in middle depth layers, found to be a meaningful factor along with types of trees and altitude. The estimation accuracy was rated as 68.87% and 60.65% in surface and middle depth layers. The introduced model is, from the tests, conceived to be useful to estimation of SOC amount and its application to SOC map production for wide areas.

Quantitative Approach of Soil Prediction using Environment Factors in Jeju Island (환경요인을 이용한 제주도 토양예측의 정량적 연구)

  • Moon, Kyung-Hwan;Seo, Hyeong-Ho;Sonn, Yeon-Kyu;Song, Kwan-Chul;Hyun, Hae-Nam
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.3
    • /
    • pp.360-369
    • /
    • 2012
  • Parent material, climate, topography, biological factors, and time are considered five soil forming factors. This study was conducted to elucidate the effects of several environment factors on soil distribution using quantitative analysis method, called soil series estimation algorithm in the soils of Jeju Island. We selected environment factors including mean temperature, annual precipitation, surface geology, altitude, slope, aspect, altitude difference within 1 $km^2$ area, topographic wetness index, distance from the shore, distance from the mountain peak, and landuse for a quantitative analysis. We analyzed the ranges of environment factors for each soil series and calculated probabilities of possible-soil series for certain locations using estimation algorithm. The algorithm can predicted exact soil series on the soil map with correctness of 33% on $1^{st}$ ranking, 62% within $2^{nd}$ ranking, 74% within $5^{th}$ ranking after estimating using randomly extracted environment factors. In predicted soil map, soil sequences of Entisols-Alfisols-Andisols on northern area and Alfisols-Ultisols-Andisols on western area can be suggested along increasing altitude. More modeling studies will be needed for the genesis process of soils in Jeju Island.

Landslide Detection and Landslide Susceptibility Mapping using Aerial Photos and Artificial Neural Networks (항공사진을 이용한 산사태 탐지 및 인공신경망을 이용한 산사태 취약성 분석)

  • Oh, Hyun-Joo
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.1
    • /
    • pp.47-57
    • /
    • 2010
  • The aim of this study is to detect landslide using digital aerial photography and apply the landslide to landslide susceptibility mapping by artificial neural network (ANN) and geographic information system (GIS) at Jinbu area where many landslides have occurred in 2006 by typhoon Ewiniar, Bilis and Kaemi. Landslide locations were identified by visual interpretation of aerial photography taken before and after landslide occurrence, and checked in field. For landslide susceptibility mapping, maps of the topography, geology, soil, forest, lineament, and landuse were constructed from the spatial data sets. Using the factors and landslide location and artificial neural network, the relative weight for the each factors was determinated by back-propagation algorithm. As the result, the aspect and slope factor showed higher weight in 1.2-1.5 times than other factors. Then, landslide susceptibility map was drawn using the weights and finally, the map was validated by comparing with landslide locations that were not used directly in the analysis. As the validation result, the prediction accuracy showed 81.44%.

Topographic Factors Computation in Island: A Comparison of Different Open Source GIS Programs (오픈소스 GIS 프로그램의 지형인자 계산 비교: 도서지역 경사도와 지형습윤지수 중심으로)

  • Lee, Bora;Lee, Ho-Sang;Lee, Gwang-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_1
    • /
    • pp.903-916
    • /
    • 2021
  • An area's topography refers to the shape of the earth's surface, described by its elevation, slope, and aspect, among other features. The topographical conditions determine energy flowsthat move water and energy from higher to lower elevations, such as how much solar energy will be received and how much wind or rain will affect it. Another common factor, the topographic wetness index (TWI), is a calculation in digital elevation models of the tendency to accumulate water per slope and unit area, and is one of the most widely referenced hydrologic topographic factors, which helps explain the location of forest vegetation. Analyses of topographical factors can be calculated using a geographic information system (GIS) program based on digital elevation model (DEM) data. Recently, a large number of free open source software (FOSS) GIS programs are available and developed for researchers, industries, and governments. FOSS GIS programs provide opportunitiesfor flexible algorithms customized forspecific user needs. The majority of biodiversity in island areas exists at about 20% higher elevations than in land ecosystems, playing an important role in ecological processes and therefore of high ecological value. However, island areas are vulnerable to disturbances and damage, such as through climate change, environmental pollution, development, and human intervention, and lacks systematic investigation due to geographical limitations (e.g. remoteness; difficulty to access). More than 4,000 of Korea's islands are within a few hours of its coast, and 88% are uninhabited, with 52% of them forested. The forest ecosystems of islands have fewer encounters with human interaction than on land, and therefore most of the topographical conditions are formed naturally and affected more directly by weather conditions or the environment. Therefore, the analysis of forest topography in island areas can be done more precisely than on its land counterparts, and therefore has become a major focus of attention in Korea. This study is focused on calculating the performance of different topographical factors using FOSS GIS programs. The test area is the island forests in Korea's south and the DEM of the target area was processed with GRASS GIS and SAGA GIS. The final slopes and TWI maps were produced as comparisons of the differences between topographic factor calculations of each respective FOSS GIS program. Finally, the merits of each FOSS GIS program used to calculate the topographic factors is discussed.

Mapping of the Righteous Tree Selection for a Given Site Using Digital Terrain Analysis on a Central Temperate Forest (수치지형해석(數値地形解析)에 의한 온대중부림(溫帶中部林)의 적지적수도(適地適樹圖) 작성(作成))

  • Kang, Young-Ho;Jeong, Jin-Hyun;Kim, Young-Kul;Park, Jae-Wook
    • Journal of Korean Society of Forest Science
    • /
    • v.86 no.2
    • /
    • pp.241-250
    • /
    • 1997
  • The study was conducted to make a map for selecting righteous tree species for each site by digital terrain analysis. We set an algorithmic value for each tree species' characteristics with distribution pattern analysis, and the soil types were digitized from data indicated on soil map. Mean altitude, slope, aspect and micro-topography were estimated from the digital map for each block which had been calculated by regression equations with altitude. The results obtained from the study could be summarized as follows 1. We could develope a method to select righteous tree species for a given site with concern of soil, forest condition and topographic factors on Muju-Gun in Chonbuk province(2,500ha) by the terrain analysis and multi-variate digital map with a personal computer. 2. The brown forest soils were major soil types for the study area, and 29 tree species were occurred with Pinus densiflora as a dominant species. The differences in site condition and soil properties resulted in site quality differences for each tree species. 3. We tried to figure out the accuracy of a basic program(DTM.BAS) enterprised for this study with comparing the mean altitude and aspect calculated from the topographic terrain analysis map and those from surveyed data. The differences between the values were less than 5% which could be accepted as a statistically allowable value for altitude, as well as the values for aspect showed no differences between both the mean altitude and aspect. The result may indicate that the program can be used further in efficiency. 4. From the righteous-site selection map, the 2nd group(R, $B_1$) took the largest area with 46% followed by non-forest area (L) with 23%, the 5th group with 7% and the 4th group with 5%, respectively. The other groups occupied less than 6%. 5. We suggested four types of management tools by silvicultural tree species with considering soil type and topographic conditions.

  • PDF

A Comparative Study of Fuzzy Relationship and ANN for Landslide Susceptibility in Pohang Area (퍼지관계 기법과 인공신경망 기법을 이용한 포항지역의 산사태 취약성 예측 기법 비교 연구)

  • Kim, Jin Yeob;Park, Hyuck Jin
    • Economic and Environmental Geology
    • /
    • v.46 no.4
    • /
    • pp.301-312
    • /
    • 2013
  • Landslides are caused by complex interaction among a large number of interrelated factors such as topography, geology, forest and soils. In this study, a comparative study was carried out using fuzzy relationship method and artificial neural network to evaluate landslide susceptibility. For landslide susceptibility mapping, maps of the landslide occurrence locations, slope angle, aspect, curvature, lithology, soil drainage, soil depth, soil texture, forest type, forest age, forest diameter and forest density were constructed from the spatial data sets. In fuzzy relation analysis, the membership values for each category of thematic layers have been determined using the cosine amplitude method. Then the integration of different thematic layers to produce landslide susceptibility map was performed by Cartesian product operation. In artificial neural network analysis, the relative weight values for causative factors were determined by back propagation algorithm. Landslide susceptibility maps prepared by two approaches were validated by ROC(Receiver Operating Characteristic) curve and AUC(Area Under the Curve). Based on the validation results, both approaches show excellent performance to predict the landslide susceptibility but the performance of the artificial neural network was superior in this study area.