• Title/Summary/Keyword: Slope stability effects

Search Result 149, Processing Time 0.026 seconds

A New Design Method of Rubble Mound Structures with Stability and Wave Control Consideration (안정성(安定性)과 파랑제어기능(波浪制御機能)을 고려(考慮)한 사석구조물(捨石構造物)의 새로운 설계법(設計法))

  • Ryu, Cheong Ro
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.7 no.3
    • /
    • pp.155-164
    • /
    • 1987
  • A new design method of rubble mound structures that includes the considerations of stability and wave control is proposed. Using the method, design of structures that reduce the wave reflection and run-up and increase the rubble stability is assured under the given wave conditions. The new design formula is developed so that the allowable prcentage of damage and the wave grouping effects on rubble stability are also considered in design. For this a new definition of the mean run-sum is made. Finally, the new method is applied for the design of uniform and composite slope rubble mound structures and the significant advantages are found.

  • PDF

Effects of the Slopes of the Rotational Axis and Bearing Preloads on the Natural Frequencies and Onset Speed of the Instability of a Rotor Supported on Gas Foil Bearings (가스 포일 베어링으로 지지된 고속 회전체의 경사각과 베어링의 기계적 예압이 고유 진동수와 불안정성 발생 속도에 미치는 영향)

  • Park, Moon Sung;Lee, Jong Sung;Kim, Tae Ho
    • Tribology and Lubricants
    • /
    • v.30 no.3
    • /
    • pp.131-138
    • /
    • 2014
  • This study investigates the effects of the slopes of the rotational axis and bearing preloads on the natural frequencies and onset speeds of the instability of a rotor supported on gas foil bearings (GFBs). The predictive model for the rotating system consists of a rigid rotor supported on two gas foil journal bearings (GFJBs) and a pair of gas foil thrust bearings (GFTBs). Each GFJB supports approximately half the rotor weight. As the slope of the rotational axis increases from $0^{\circ}$(horizontal rotor operation) to $90^{\circ}$(vertical rotor operation), the applied load on the GFJB owing to the rotor weight decreases. The predictions show that the natural frequency and onset speed of instability decrease significantly with an increase in the slope of the rotational axis. In a parametric study, the nominal radial clearance and preload for the GFJB were changed. In general, a decrease in the nominal radial clearance lead to an increase in the natural frequency and onset speed of instability. For constant assembly clearance, the decrease in the preload changed the natural frequency and onset speed of instability with insignificant improvements in the rotordynamic stability. The present predictions can be used as design guidelines for GFBs for oil-free high-speed rotating machinery with improved rotordynamic performance.

Effect of micro-environment in ridge and southern slope on soil respiration in Quercus mongolica forest

  • Lee, Jae-Seok
    • Journal of Ecology and Environment
    • /
    • v.42 no.4
    • /
    • pp.210-218
    • /
    • 2018
  • Background: Soil respiration (Rs) is a major factor of the absorption and accumulation of carbon through photosynthesis in the ecosystem carbon cycle. This directly affects the amount of net ecosystem productivity, which affects the stability and sustainability of the ecosystem. Understanding the characteristics of Rs is indispensable to scientifically understand the carbon cycle of ecosystems. It is very important to study Rs characteristics through analysis of environmental factors closely related to Rs. Rs is affected by various environmental factors, such as temperature, precipitation, soil moisture, litter supply, organic matter content, dominant plant species, and soil disturbance. This study was conducted to analyze the effects of micro-topographical differences on Rs in forest vegetation by measuring the Rs on the ridge and southern slope sites of the broadly established Quercus mongolica forest in the central Korean area. Method: Rs, Ts, and soil moisture data were collected at the southern slope and ridge of the Q. mongolica forest in the Mt. Jeombong area in order to investigate the effects of topographical differences on Rs. Rs was collected by the closed chamber method, and data collection was performed from May 2011 to October 2013, except Winter seasons from November to April or May. For collecting the raw data of Rs in the field, acrylic collars were placed at the ridge and southern slope of the forest. The accumulated surface litter and the soil organic matter content (SOMC) were measured to a 5 cm depth. Based on these data, the Rs characteristics of the slope and ridge were analyzed. Results: Rs showed a distinct seasonal variation pattern in both the ridge and southern slope sites. In addition, Rs showed a distinct seasonal variation with high and low Ts changes. The average Rs measurements for the two sites, except for the Winter periods that were not measured, were $550.1\;mg\;CO_2m^{-2}h^{-1}$ at the ridge site and $289.4\;mg\;CO_2m^{-2}h^{-1}$ at the southern slope, a difference of 52.6%. There was no significant difference in the Rs difference between slopes except for the first half of 2013, and both sites showed a tendency to increase exponentially as Ts increased. In addition, although the correlation is low, the difference in Rs between sites tended to increase as Ts increased. SMC showed a large fluctuation at the southern slope site relative to the ridge site, as while it was very low in 2013, it was high in 2011 and 2012. The accumulated litter of the soil surface and the SOMC at the depth range of 0~5 cm were $874g\;m^{-2}$ and 23.3% at the ridge site, and $396g\;m^{-2}$ and 19.9% at the southern slope site. Conclusions: In this study, Rs was measured for the ridge and southern slope sites, which have two different results where the surface litter layer is disturbed by strong winds. The southern slope site shows that the litter layer formed in autumn due to strong winds almost disappeared, and while in the ridge site, it became thick due to the transfer of litter from the southern slope site. The mean Rs was about two times higher in the ridge site compared to that in the southern slope site. The Rs difference seems to be due to the difference in the amount of litter accumulated on the soil surface. As a result, the litter layer supplied to the soil surface is disturbed due to the micro-topographical difference, as the slope and the change of the community structure due to the plant season cause heterogeneity of the litter layer development, which in turn affects SMC and Rs. Therefore, it is necessary to introduce and understand these micro-topographical features and mechanisms when quantifying and analyzing the Rs of an ecosystem.

특정사례사면 해석 결과 및 평가

  • Baek, Gyu-Ho;O, Se-Bung;Lee, Seung-Rae
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1991.10a
    • /
    • pp.25-33
    • /
    • 1991
  • The slope stability analysis of Carsington dam is performed, considering the effects of pore water pressure, slip surface configuration, lateral stress and various shear strengths. Without yellow clay layer, the Bowles' and STABR programs were used to find the circular slip surface which has the maximum safety factor. At last using the Morgenstern-Price method, the effects of rainfall and strength of yellow clay were mainly considered in the back analyses after failure. It was found that (1) the potential slip was not predicted in the analysis based on the modified Bishop method without considering the yellow clay layer, and (2) the crllapse of dam had been occurred according to the critical shear strength of the yellow clay and pore water pressure increase.

  • PDF

Evaluation of the Reinforcing Effect on Shallow Foundation by Micropiles (Micropile에 의한 얕은기초의 보강효과)

  • Jeang, Jae-Young;Bae, Kyung-Tae;Park, Seong-Wan;Lee, Chong-Kyu
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.538-543
    • /
    • 2004
  • Micropile has been widely used for reinforcing general grounds, improving slope stability and structural foundations. However, a need still exists for evaluating the effects of inclined micropiles on shallow foundations in Korea. In this paper, numerical analyses were presented to evaluate settlement characteristics on shallow foundations reinforced by micropiles and the effects of inclined micropiles under various conditions such as the installation position, installation angle, hardness(diameter), and grouting type. In addition, this paper reports trends of effectiveness and efficiency of using inclined micropiles on shallow foundations under specified conditions.

  • PDF

A Study on the Development of Assembling Soil Nailing Method and Its Applications (조립식 쏘일네일링 공법의 개발과 시험시공사례에 관한 연구)

  • Kwon, Young-Ho;Park, Shin-Young;Ryu, Jeong-Soo;Gang, In-Kyu
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.113-120
    • /
    • 2005
  • Soil nailing system can be mentioned to a method of supporting as the shear strength of in-situ soils is increased by passive inclusions. In the general soil nailing system, facing walls are used in two kind of a lattice concrete block or a cast in placed concrete wall. A case of lattice concrete blocks is used in slow slopes greater than 1:0.7. Also, a case of a cast in placed concrete wall is used in steep slopes less than 1:0.5. The cast in placed concrete walls are constructed to 30cm thick together with a shotcrete facing. In this study, the assembling soil nailing method as a new soil nailing system is proposed. This method is constructed assembly using precast concrete panels. Therefore ability of the construction and quality of the facings can be modified than a usual soil nailing system. Also, this method can be obtained the effects that a global slope stability increase, as precast concrete panels is put on cutting face after excavating a slope.

  • PDF

A Reliability Analysis of Slope Stability of Earth-Rockfill Dam (Earth-Rockfill Dam사면파괴에 대한 신뢰도 연구(I))

  • 박현종;이인모
    • Geotechnical Engineering
    • /
    • v.7 no.3
    • /
    • pp.21-32
    • /
    • 1991
  • The purpose of this paper is to develop a reliability model for slope stability of Earth-rockfill dams which accounts for all uncertainties encountered. The uncertain factors of the design variables include the cohesion, the angle of internal friction, and the porewater Pressure in each zone. More specifically, the model errors in estimating those variables are studied in depth. To reduce the uncertainties due to model errors, updated design variables are obtained using Bayesian Theory. For stability analysis, both the two-dimesional stability analysis and the three-dimensional stability analysis where the end effects and the system reliability concept are considered are used for the reliability calculations. The deterministic safety factor by the three-dimensional analysis is lager than that by the two-dimensional anlysis. However, the probability of failure by the three-dimensional analysis is about 3.5 times larger that by the two-dimensional analysis. It is because the system reliability concept is used in the three-dimensional analysis. The sensitivity analysis shows that the probability of failure is more sensitive to the uncertainty of the cohesion than that of the angle of internal friction.

  • PDF

Parametric Study on Displacement of Earth Retaining Wall by the Bermed Excavation Using Back Analysis (역해석을 통한 소단굴착에 따른 흙막이 벽체변위의 매개변수 연구)

  • Lee, Myoung-Han;Kim, Tae-Hyung
    • Journal of the Korean Geosynthetics Society
    • /
    • v.14 no.4
    • /
    • pp.23-33
    • /
    • 2015
  • Together with the wall stiffness, a berm has the role of deciding the stability of a temporary retaining wall before structure installation after excavation. Especially in case of loose or soft soil excavated ground, the role of berm is very important. In this study, the measurement data obtained from the temporary retaining wall in the bermed excavation site in urban and numerical analysis are used to investigate the effects of berm's dimension (width and slope), excavation depth and ground property on the maximum horizontal displacement of the temporary retaining wall. The measurement data indicated that the wall displacement varied to the berm's width. That is, as the berm width decreased, the wall displacement increased. As a result of numerical analyses, the maximum wall displacement increased as slope increased and berm width decreased. This means that the berm is effectively restrained to the wall displacement. As excavation depth increased, the effect of berm's slope and width increased. In case of the same berm condition, the wall displacement restrained as ground property increased.

An Experimental Analysis for the Stability Investigation of Slope on Saemangeum Lake Dykes (새만금 방수제 축조사면의 안정성 검토를 위한 실험적 분석)

  • Jang, Dong-Gi;Kim, Ki-Nyun;Kim, Dong-Hwan;Seo, Kwan-Seok;Son, Moon-Joon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.687-697
    • /
    • 2010
  • This study was designed to carry out studies on critical seepage velocity and critical hydraulic gradient using a piping test targeting SM and ML which are widely distributed ahead of and behind the depth of E.L(-)10m in Saemangeum area in order to examine stability of embankment built on the ground vulnerable to piping. The effects of relative densities on critical hydraulic gradient and critical velocity were also compared and analyzed using empirical formula and theoretical formula, and relative densities were set up as respectively 9%, 25%, 50%, and 75% for this experiment. As a result, for critical hydraulic gradient, most of specimens detected piping at lower values than the empirical formula of Terzaghi(1922). It is, therefore, considered that the empirical formula devised by Kalin(1977) or Hayashi(1978) is more reasonable to be conservative. It was also found that critical velocity decreased as relative density increased, and critical velocity predicted was mostly lower than the theoretical formula.

  • PDF

A Study on Application and Stability Analysis of Spiral Pipe Nailing System (스파이럴 파이프 네일링 시스템의 안정해석 및 적용성에 관한 연구)

  • Park, Si-Sam;Park, Sung-Chul;Jung, Sung-Pill;Kim, Hong-Taek
    • Journal of the Korean GEO-environmental Society
    • /
    • v.5 no.2
    • /
    • pp.41-49
    • /
    • 2004
  • In this study, a newly modified soil nailing technology named as the SPN (Spiral Pipe Nailing) system, is developed to self drilling method can apply to ground which is hard to keep shape of bore hole. And limit equilibrium analysis with simplified trial wedge method while length ratio and bond ratio being altered was performed to evaluate slope stability considered of tensile strength and bending stiffness. Also, using $FLAC^{2D}$ program, superiority of the SPN system was compared to the GSN (General Soil Nailing) system about an example section. And effects of various factors related to the design of the SPN system, such as the type of drilling method and the bit, are examined throughout a series of the displacement-controlled field pull-out tests. As a result, the SPN system is better than the GSN system in slope stability because of having larger bending stiffness, tensile strength and unit skin friction. And results of simplified trial wedge method are similar to results of TALREN 97 program, commercial limit equilibrium analysis computer software, about an example section. Consequently, it will find out of that the SPN system reduce displacements and settlements in down excavation process as well as to increase the global stability.

  • PDF