• Title/Summary/Keyword: Slope sliding

Search Result 183, Processing Time 0.02 seconds

Lateral Force Acting on H-piles in Plastically Deforming Ground (소성변형지반 중의 H형 말뚝에 작용하는 수평력)

  • 김영인
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.4
    • /
    • pp.86-91
    • /
    • 2001
  • In lateral ground flow, slope stability, and land slide problems, H-piles have been often used for a horizontally deforming ground to prevent the failure of mass of soil in a downward and outward movement of a slope. Here, Theoretical equations are derived to estimate the lateral force, assuming that the Mohr-coulomb's Plastic states occures in the ground just around H-piles. In this study, the mechanism of lateral force acting on passive pile that is in a row, situated in the ground undergoing plastic deformation was discussed, and its theoretical analysis was carried out considering the interval between H-piles. The solution of the theoretical equation derived from here showed resonable characteristic for constants of soil as well as for the interval, widths, and heights of H-pile.

  • PDF

Behavior and Lateral Force of H-piles under lateral Soil Movement in Sand (측방변형을 일으키는 모래지반속의 H형 말뚝에 작용하는 수평력)

  • 김영인
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.6
    • /
    • pp.44-48
    • /
    • 2002
  • In lateral ground flow, slope stability, and land slide problems, H-piles have often been used, on a horizontally deforming ground, to prevent the failure of mass of soil in a downward and outward movement of a slope. Here, theoretical equations are derived to estimate the lateral force, assuming that the Mohr-Coulomb's plastic states occur in the ground, just around H-piles. In this study, some model experiments were performed to check the lateral forces determined from theoretical equations, using several pile widths, heights and various interval ratios between H-piles for sand specimens. The solution of the theoretical equation, derived from previous studies, showed reasonable characteristics for constants of soil, as well as for the interval, widths, and heights of H-Pile.

Complex failure mechanism of rock slopes (암반 사면의 복합 파괴 메커니즘 규명)

  • Yoon, Woon-Sang;Jeong, Ui-Jin;Park, Sung-Wook;Choi, Jae-Won
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.10a
    • /
    • pp.268-273
    • /
    • 2006
  • Slope failures can be occurred by complex mechanism. In this cases, failures shows characteristics of complex failure mechanism during progressive mass movements. A case is a merged large slide with two sliding events triggered by slip on fault plane. Another case shows extension of failure area by sliding or subsidence at backyards of toppling areas. Generally, areas of progressive failures have wider than them of simple events.

  • PDF

Development of Unmanned Cleaning Robot for Photovoltaic Panels (태양광발전시설 무인 유지보수 로봇 개발)

  • Lee, Hyungyu;Lee, Sang Soon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.3
    • /
    • pp.144-149
    • /
    • 2019
  • This paper describes the results of a study on the unmanned maintenance robot that simultaneously performs the cleaning and inspection of the photovoltaic panels. The robot has a special adsorptive device, an infrared sensor, a vacuum level sensor and a camera. The robot uses two SSC (Sliding Suction Cup) adsorptive devices to move up and down the slope. First, the forces generated when the robot moves up the slope are mechanically analyzed, and the required design and control of the adsorption system are suggested. The robot was designed and manufactured to operate stably by using the presented results. Next, the normal force between the panel and the wheel was measured to confirm that the robot was manufactured and operated as intended, and the robot motion was tested on the inclined panel. It has been proven that robots are well designed and built to clean and inspect sloped panels.

Direction Analysis of Surface Sliding at ${\bigcirc}{\bigcirc}$ District in the Samcheok Coalfield, Korea (삼척탄전 내 ${\bigcirc}{\bigcirc}$지역에서 발생한 지반 거동의 방향 분석)

  • Lee, Byung-Joo
    • The Journal of Engineering Geology
    • /
    • v.22 no.1
    • /
    • pp.59-65
    • /
    • 2012
  • The purpose of this study is to analyze the direction of slope sliding that occurred at the highland ${\bigcirc}{\bigcirc}$ district in the Samcheok coalfield, using geological and structural detail surveys. The study area is dominated by the Paleozoic Pyong-an Group, and sliding is concentrated in zones of alternating sandstone and shale beds in the Geumcheon and Jangsung Formations. Discontinuities in the area have a strike of NE-SW and dip at 30~$80^{\circ}$ to the NW and 40~$80^{\circ}$ to the SE. However, some have strikes of NW-SE. In slide area group 1 (P1 to P4), en echelon tension gashes were caused by shearing. The surface in the areas of group 2 (P5 to P7) and group 3 (P8 and P9) is marked by step-type tension cracks that formed due to extension. This phenomenon caused anticlockwise rotation of the sliding slope. Otherwise, the cutting of the road side through the eastern slope of the mountain contributed to surface sliding due to geographical equilibrium loss.

Stability analysis of slopes under groundwater seepage and application of charts for optimization of drainage design

  • Deng, Dong-ping;Lia, Liang;Zhao, Lian-heng
    • Geomechanics and Engineering
    • /
    • v.17 no.2
    • /
    • pp.181-194
    • /
    • 2019
  • Due to the seepage of groundwater, the resisting force of slopes decreases and the sliding force increases, resulting in significantly reduced slope stability. The instability of most natural slopes is closely related to the influence of groundwater. Therefore, it is important to study slope stability under groundwater seepage conditions. Thus, using a simplified seepage model of groundwater combined with the analysis of stresses on the slip surface, the limit equilibrium (LE) analytical solutions for two- and three-dimensional slope stability under groundwater seepage are deduced in this work. Meanwhile, the general nonlinear Mohr-Coulomb (M-C) strength criterion is adopted to describe the shear failure of a slope. By comparing the results with the traditional LE methods on slope examples, the feasibility of the proposed method is verified. In contrast to traditional LE methods, the proposed method is more suitable for analyzing slope stability under complex conditions. In addition, to facilitate the optimization of drainage design in the slope, stability charts are drawn for slopes with different groundwater tables. Furthermore, the study concluded that: (1) when the hydraulic gradient of groundwater is small, the effect on slope stability is also small for a change in the groundwater table; and (2) compared with a slope without a groundwater table, a slope with a groundwater table has a larger failure range under groundwater seepage.

An Installation of 154kV XLPE CABLE in Steep Slope Condition (고낙차 조건에서의 154kV XLPE CABLE 설치)

  • Hwang, Soon-Chul;Lee, Chang-Su;Lee, Cheon-Ku;Goh, Chang-Sung
    • Proceedings of the KIEE Conference
    • /
    • 1992.07b
    • /
    • pp.775-778
    • /
    • 1992
  • In 1980, 154kV OF cable was installed at the Cheong-Pyeong pumped-storage power station. Effective head of this pumped-storage station is 250m between upper and lower re-servior and length of cable route is 750m. However, several failures have happened owing to steep slope during the operation. 154 kV XLPE cable was applied for this power station to eliminate a lack of stability on account of steep slope and successfully installed in 1991. Meanwhile, installation procedure brings about many problem to be solved. In this paper, we describe the counter measure of cable sliding phenomena caused by heat shrinkage as well as the method of installation of cable under the steep slope condition. And hereafter, we think this paper will be a good reference to design and installation of 154kV XLPE cables in steep slope turnnel at urban areas.

  • PDF

A novel story on rock slope reliability, by an initiative model that incorporated the harmony of damage, probability and fuzziness

  • Wang, Yajun
    • Geomechanics and Engineering
    • /
    • v.12 no.2
    • /
    • pp.269-294
    • /
    • 2017
  • This study aimed to realize the creation of fuzzy stochastic damage to describe reliability more essentially with the analysis of harmony of damage conception, probability and fuzzy degree of membership in interval [0,1]. Two kinds of fuzzy behaviors of damage development were deduced. Fuzzy stochastic damage models were established based on the fuzzy memberships functional and equivalent normalization theory. Fuzzy stochastic damage finite element method was developed as the approach to reliability simulation. The three-dimensional fuzzy stochastic damage mechanical behaviors of Jianshan mine slope were analyzed and examined based on this approach. The comprehensive results, including the displacement, stress, damage and their stochastic characteristics, indicate consistently that the failure foci of Jianshan mine slope are the slope-cutting areas where, with the maximal failure probability 40%, the hazardous Domino effects will motivate the neighboring rock bodies' sliding activities.

Evaluation of the Applicability of FRP Grouted Reinforcing Method for Rock Slopes (암반사면에서 FRP 보강 그라우팅 공법의 적용성 평가)

  • Kim, Seong-Chan;Lee, Dal-Won
    • Korean Journal of Agricultural Science
    • /
    • v.35 no.2
    • /
    • pp.213-223
    • /
    • 2008
  • The instability of rock slopes caused by heavy rainfall and soil mass sliding needs the preventable and reinforcing method. The most important factor for the stability is the shear strength available in the planar part of the failure surface, which shows that a progressive failure takes place and a reinforcing of rock slope using FRP grout is effectively available. In this study, a grouting bolting interval predictions by limit equilibrium analysis and Matlab mathematical computer codes in several cases is presented for FRP reinforced rock slope. The proposed mathematical computer code can be easily applied for seeking properly FRP grout intervals prior to design and execute a reinforcement of a rock slope in practice.

  • PDF

Assesment on the Characteristics of Foundation Bearing Capacity in Reinforced Soil Wall Structure of Large Scale (대규모 보강토옹벽 구조물에서의 기초지반 지지력특성 평가)

  • Han, Jung-Geun;Yoo, Seung-Kyung;Cho, Sam-Deuk;Lee, Kyang-Woo;Hong, Ki-Kwon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.5 no.1
    • /
    • pp.9-14
    • /
    • 2006
  • The reinforced soil retaining wall structures of serious types with environmental are widely expanding more and more in Korea, which divided conventional type's reinforced soil retaining wall on segmental retaining wall. The causes of most crack occurred at block in reinforced soil retaining wall structure caused by the differential settlement of foundation. It is difference of settlement for significant factor that with overall slope stability. In this study, design assessment of foundation bearing capacity related to differential settlement of foundation ground was considered. And, also, through case study, the countermeasure methods and its application were suggested that the bearing capacity of foundation had to stabilize. The foundation ground in charge of bearing capacity should be affected by the resisting force of sliding, because the foundation parts of reinforced soil retaining wall were belongs to potential slope sliding area in overall stabilizing including retaining wall structures. Therefore, the analyzing or the designing of bearing capacity for foundation should be considered control capacity on the overall slope sliding.

  • PDF