• Title/Summary/Keyword: Slope cutting

Search Result 198, Processing Time 0.151 seconds

An Analytical Study of Slope Stability to Reinforcement Stage in Cut Slope (절개사면에서의 보강단계별 사면안정성에 대한 해석적 연구)

  • Kang, Ki-Chun;Song, Young-Suk;Hong, Won-Pyo;Kim, Tae-Hyung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.724-731
    • /
    • 2006
  • The purpose of this study is to estimate a landslide using the SLOPILE program from the slope reinforced by slope stability systems such as soil nailing and pile. To do this, cutting slope located at Donghae-Highway in Kwangwon-Do was considered. The behavior of slope was monitored for a long term by using instrumentation according to the reinforcement stages. The sequence of reinforcement stages was followed as pile installation, boring, soil nailing installation, anchoring and embankment. The result from this case study shows that the safety factor of slope depends on the reinforcement stage more or less.

  • PDF

The example of face mapping on rock slope at Chubu-Daejeon national road (옥천계 분포지 추부-대전 간 국도 대절토 사면의 Face Mapping 사례)

  • Lee, Byung-Joo;Chae, Byung-Gon;Lee, Kyoung-Mi
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.51-60
    • /
    • 2006
  • At new constructing national road, a cutting slope was surveyed and gotten face mapping for three months. The slope is composed of gray phyllite and coaly slate which is the Chang-ri Formation, Okcheon system. The slope angle is 40 degree and the direction is NNE. The attitude of schistosity is $260^{\circ}/45^{\circ}$. So the slope direction is nearly parallel to the schistosity. This is the reason that the slope is very unstable. On the other hand, the very unstable slope is caused by the direction of the schistosity and the slope. First month the coaly slate was slided through the schistosity plane about 10cm. However, three months late the displacement was 2m maximum.

  • PDF

The research between the vertical slope and the train set performance (선로의 기울기와 열차운전성능에 관한 연구)

  • Jeong Byeng-Ryul;Woo Sung-won;Park Seong-Ik
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.400-405
    • /
    • 2005
  • The vertical slope of railway track is the differences of attitude for the horizontal distances between two positions of railway. It is better to be small vertical slope for the comfortable of passengers and the operation of railway system. However, the variable vertical slope is required that the simple vertical slope causes the huge quantities of embankment and cutting, the continuous welded rail tunnels, the continuous welded rail bridges, etc,. This research is for the relation between the vertical slopes and the trainset performances. This research shows that the effective vertical slopes for the operation of railway. The velocity of car and operation time and the consumed energy was considered for each vertical slope and type of car power system. The result of suitable vertical slope from this research is to be used for the design of railway plan.

  • PDF

Analysis of the Characteristics of the Disaster Occurrence and the Disaster-prone Zones on the Forest Roads in the Jeollabuk-do Area (전라북도 지역의 임도 재해발생 및 위험지 특성분석)

  • Park, Ji-hyuck;Park, Chong-Min
    • Journal of Korean Society of Forest Science
    • /
    • v.104 no.4
    • /
    • pp.598-606
    • /
    • 2015
  • This study analyzed the characteristics of the disaster occurrence and disaster-prone zones on the 85 forest roads in the Jeollabuk-do area by referring to their forest environment factors. The on-site survey reveal the types of forest road disasters as follows: erosions of cutting slopes 54.1%, erosions of the filling slope 35.3%, collapses of cutting slopes with filling slope 9.4%, and erosions of road surface 1.1%. Disasters most frequently occurred in the vertical location (the hillside) and the horizontal location (the slope), and the forest factors affecting the road disasters were degree of cutting slopes in $31^{\circ}{\sim}40^{\circ}$, degree of filling slopes in $21^{\circ}{\sim}30^{\circ}$, and the soil texture of SiL. The most significant factors on the most frequent occurrence of forest road disasters were forest type of coniferous, slope aspect northeast, forest age of plantation and felling area, and rainfall in 1601~1700. An analysis of the occurrence of the forest road disasters in the Jeollabuk-do area showed a positive correlative relationship with the following factors of the forest environment within a 1% error: degree of cutting slope in $31^{\circ}{\sim}40^{\circ}$, annual accumulation rainfall in 1601~1700. and showed a positive correlative relationship with the following factors of the forest environment within a 5% error: horizontal location of valley, forest type of coniferous, length of slope more than 20 m, forest age of plantation and felling area, soil texture of SiL.

A study on the Analysis and Evaluation of Cutting forces for High Speed Machining by a Ball-end mill (볼엔드밀의 고속가공에서 절삭력 분석 및 평가에 관한 연구)

  • Lee Choon Man;Ryu Seung Pyo;Ko Tae Jo;Jung Jong Yun;Chung Won Jee
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.5 s.170
    • /
    • pp.167-174
    • /
    • 2005
  • High-speed machining is one of the most effective technologies to improve productivity Because of the high speed and high feed rate, high-speed machining can give great advantages for the machining of dies and molds. This paper describes on the analysis and evaluation of cutting force in high-speed machining. Cutter rotation directions, slope directions, spindle revolution and depth of cut are control factors for cutting force. The effect of the control factors on cutting force is investigated for the high speed machining of STD11.

A Geologic Disasters in Quaternary Volcanic Area, Ulreung-Island (제사기(第四紀) 화산암(火山岩) 분포지역(分布地域)에 빈발(頻發)하는 지질재해(地質災害)에 관(關)하여)

  • Kim, Young Ki
    • Economic and Environmental Geology
    • /
    • v.13 no.2
    • /
    • pp.80-90
    • /
    • 1980
  • A geologic disasters in Ulreung-island is forming along the slope of pyroclastic, deposits and this paper discusses soil mechanics and properties and morphologies of pyroclastic soil. The typers of degradation are determined by cutting the soil and classified genetically. Finally, the range of stability is deduced from dip of slope (${\alpha}$) and lengh of slope (l) as the following;.

  • PDF

Applicaton of a Geomechanical Classification for Rock Slope (암반 사면에 대한 새로운 암반 분류안의 적용)

  • 김대복
    • Tunnel and Underground Space
    • /
    • v.4 no.3
    • /
    • pp.215-227
    • /
    • 1994
  • Rock Mass classifications have been developed in many European countries. The most widely used classification methods are the Rock Mass Rating (RMR) system proposed by Bieniawski(1973) and the Q-system developed By Barton et al. (1974). These methods are also adopted at many mountain tunnels and subway sites in our country. Here, a geomechanical classification for slopeds in rock, the "Slope Mass Rating"(SMR) is presented for the preliminary assessment of slope stabiliyt. This method can be applied to excavation and support design in the front part of tunnel and cutting area as a guide line and recommendation on support methods which allow a systemmetic use of geomechanical classification for rock slopes.

  • PDF

Failure Characteristics of Cut Slopes of Shale in Ky ngsang Basin (경상분지 셰일 지역에서의 절토사면 파괴 특성)

  • 김경석;유병옥;이상돈
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.11b
    • /
    • pp.103-114
    • /
    • 2002
  • Stability of cut-slope is considered to have a deep relationship with rock types since rock has its own engineering and geological characteristic such as shear strength, durability, weathering profile, geological structures. Therefore, analysis of geological and engineering characterisics of rock mass is essential for the evaluation of rock slope stability This paper introduces the statistical data of slope failure cases which was collected from highway slopes constructed in sedimentary rock mainly of shale in Ky ng-sang Basin. Primary failure feature in this area is planar failure along the bedding regardless of slope geometry. Even a disasterous slope failure case due to the thick clay layer between the beddings was reported. Failures and rock fall were reported to ocurred frequently after the completion of cutting due to the weathering, so long-term slope stability should be considered as a important factors in design.

  • PDF

A Case Study on Reinforcement of Cut Slope with Fault Zone (단층대가 발달한 사면의 보강대책에 관한 사례 연구)

  • Kim, Jeong-Ho;Park, Choon-Sik;Kim, Tae-Sung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.930-937
    • /
    • 2008
  • From the result of precise field investigation and stability analysis for the cut slope, following results were acquired. 1. The cause of the collapse of cut slope came from circle sliding collapse by fault zone which remained inner weathering zone. 2. The existing destructed soil and rock can be removed by reinforcement. And to prevent the additional destruction, it is judged that applying the method after relaxing the slope would be reasonable. 3. To make cut slope stable, soft rock layer should be done cutting 1:1.5 and 1:2.0 ~ 1:2.5 for weathered rock and soil layer. 4. Heavy water leakage section should be applied horizontal drain method so that water pressure should not act to the cut slope.

  • PDF

A Study of Characteristics on Weathering for Decomposed Granite Soils in Cutting Slope (화강토 지반 절취사면의 풍화특성에 관한 연구)

  • Lee, Song;Kim, Ju-Hyun
    • Proceedings of the KSR Conference
    • /
    • 2001.05a
    • /
    • pp.451-458
    • /
    • 2001
  • The purpose of this study was to evaluate shear parameters on cutting slope of weathered granite soils by using small dynamic cone penetration test on the very moment of its cutting. The results were : On the relations among N$\_$c/, Li, and CEC, the condition of Li>6%, CEC>14(meq/100g) corresponds to that of N$\_$c/ values of 2∼30, and 3<CEC<14(meq/100g) to N$\_$c/=30∼50. Comparing the smallest penetration depth from two small dynamic cone penetration tests done at 5m below from the top of the slope on April 15th, October 31t. there was a l0cm difference. So we could find out the degree of weathering on the slope. And dividing the difference by 190 days (the whole testing time), we could know it's being weathered 0.052mm each day. The more N. value increases, the more shear parameters(internal friction angle ; $\phi$, cohesion : c) increase at a standard pressure($\sigma$>32㎪). So the condition of N$\_$c/=2∼50 corresponds to that of $\phi$=27∼50, c=12∼49㎪. From the above testing results, the N$\_$c/ values more correspond to $\phi$ values than c values. In conclusion, this study suggests that on small dynamic cone penetration test a penetration boundary line of 5 centimeters is decided at around Li=4%, CEC=3(meq/100g) which is classified as a strong weathering soil. It also shows that as Li increases CEC increases as well, while N$\_$c/ decreases.

  • PDF