• 제목/요약/키워드: Slit-jet

검색결과 43건 처리시간 0.029초

고속 평면제트와 쐐기에 의한 충돌 순음의 주파수특성 (Frequence Characteristics of Impinging Tones by High-Speed Plane Jets and Wedges)

  • 권영필;장욱;이근희;김욱
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 춘계학술대회논문집
    • /
    • pp.1210-1216
    • /
    • 2001
  • The impinging tones by high-speed plane jets are investigated for the characteristics of edgetone generation based on experimental observations. Experiment has been performed for edgetones with a slit nozzle and a wedge system. The jet in the experiment is varied from low to high subsonic speed to obtain the effect of the speed on the frequency characteristics of impinging tones. The experimental data obtained previously for edgetones and platetones by various nozzles are compared with the present edgetone data for the condition of tone generation, the frequency ranges and the effective source point. It is found that the jet speed has no fundamental influence on the impinging tone characteristics. Regardless of the jet speed, the effective source point is about a quarter wavelength downstream from the edge tip. With increase in jet speed, the influence of the nozzle configuration is decreased and the operating frequencies show good coincidencies by normalized parameters based on the slit thickness.

  • PDF

고속 평면제트에 의한 쐐기음의 특성 연구 (A Study on the Characteristics of Edgetones by High-Speed Plane Jets)

  • 권영필;이근희;장욱;김욱
    • 대한기계학회논문집A
    • /
    • 제25권12호
    • /
    • pp.2100-2108
    • /
    • 2001
  • The impinging tones by high-speed plane jets are experimentally investigated to study the edgetone characteristics. Experiment used a slit nozzle and a wedge system to generate edgetones. The jet in the experiment is varied from low to high subsonic speed to obtain the effect of the speed on the frequency characteristics of impinging tones. The experimental data obtained previously fur edgetones and platetones by various nozzles are compared with the present edgetone data. And the condition of tone generation, the frequency ranges, the effective source point and the sound pressure level are compared and discussed. It is found that the jet speed has no diect influence on the impinging tone characteristics. Regardless of the jet speed, the effective source point is about a quarter wavelength downstream from the edge tip. With increase in jet speed, the influence of the nozzle configuration is decreased and the operating frequencies show good coincidences by normalized parameters based on the slit thickness.

스파이럴 제트 유동에 미치는 축소노즐 각도의 영향 (The Effect of Convergent Nozzle Angle on a Spiral Jet Flow)

  • 조위분;백승철;김희동
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.1482-1487
    • /
    • 2004
  • In general the swirl jet is generated by the injected flow that is forced to the tangential direction. A spiral nozzle which is composed of an annular slit and a convergent nozzle, is released the spiral jet that is generated by the radial flow injection through an annular slit. The objective of the present study is to investigate the additional study that is studied a changed the convergent nozzle angle and nozzle length. In the present computation, a finite volume scheme is used to solve three dimensional Navier-Stokes equations with RNG $k-{\varepsilon}$ turbulent model. The convergent nozzle angle and the nozzle length of the spiral nozzle are varied to obtain different spiral flows inside the conical convergent nozzle. The present computational results are compared with the previous experimental data. The results obtained show that the convergent nozzle angle and the nozzle length of the spiral jet strongly influence the characteristics of the spiral jets, such as a tangential and a jet width.

  • PDF

정상초음파장의 위치에 따른 초음파 무화 케로신 부상화염의 거동 (A Behavior of the Ultrasonically-atomized Kerosene Lifted-flame According to the Position of Ultrasonic Standing-wave Field)

  • 배창한;김정수
    • 한국추진공학회지
    • /
    • 제27권1호
    • /
    • pp.1-8
    • /
    • 2023
  • 본 연구는 수송기체 유량 및 정상초음파장의 가진 위치에 따른 초음파 무화 케로신 화염의 거동을 분석하기 위해 수행되었다. Slit-jet 노즐을 빠져나오는 에어로졸의 연소장은 DSLR, ICCD 및 초고속 카메라와 슐리렌 기법을 통해 가시화되었으며, 연료소모량은 정밀저울을 통해 측정되었다. 그 결과, 정상초음파장 경계영역에서 화염이 갇히고, 정상초음파장의 위치가 높아질수록 연료소모량은 감소하였다.

코안다 효과를 이용한 제트 특성에 관한 연구 (A Study on Jet Characteristic using a Coanda Effect in a Constant Expansion Rate Nozzle)

  • 이동원;이삭;김병지;권순범
    • 한국항공우주학회지
    • /
    • 제35권8호
    • /
    • pp.706-713
    • /
    • 2007
  • 코안다 효과를 유발시키기 위해 환상 슬릿과 팽창률이 일정하지 않은 축소 노즐로부터 분사되는 제트의 구조와 환상의 슬릿과 팽창률이 일정한 노즐로부터 분사되는 제트의 구조를 비교 연구하였다. 실험에 있어서 노즐 입구와 출구 직경을 각각 40mm, 20mm로 하였고, 노즐 출구 평균 속도를 90m/s로 하였다. 3축 이송 장치와 스캐닝 밸브 시스템을 이용하여 제트 축 및 반경 방향 압력을 측정하고, 측정된 정압 및 전압으로부터 구한 속도 분포를 비교 검토하였다. 안정성과 수속성이 우수한 제트를 얻기 위해서는 팽창률이 일정하지 않은 노즐보다 팽창률이 일정한 축소 노즐과 환상의 슬릿을 통해 코안다 효과를 이용하여 분사하는 것이 효과적임을 밝혔다. 또한 팽창에 따른 압력 강하도 팽창률이 일정한 노즐의 경우가 상대적으로 더 작게 됨을 알았다.

A Numerical Study on the Geometry of Jet Injection Nozzle of a Coanda Control Surface

  • Seo, Dae-Won;Kim, Jong-Hyun;Kim, Hyo-Chul;Lee, Seung-Hee
    • Journal of Ship and Ocean Technology
    • /
    • 제12권3호
    • /
    • pp.36-54
    • /
    • 2008
  • A jet stream applied tangential to a curved surface in fluid increases lift force by strengthening circulation around the surface and this phenomenon is known as the Coanda effect. Many experimental and numerical studies have been performed on the Coanda effect and the results found to be useful in various fields of aerodynamics. Recently, preliminary studies on Coanda control surface are in progress to look for practical application in marine hydrodynamics since various control surfaces are used to control behaviors of ships and offshore structures. In the present study, the performance of a Coanda control surface with different geometries of the jet injection nozzle was surveyed to assess applicability to ship rudders. A numerical simulation was carried out to study flow characteristics around a section of a horn type rudder subjected to a tangential jet stream. The RANS equations, discretized by a cell-centered finite volume method were used for this computation after verification by comparing to the experimental data available. Special attentions have been given to the sensitivity of the lift performance of a Coanda rudder to the location of the slit (outlet) and intake of the gap between the horn and rudder surface at the various angles of attack. It is found that the location of the water intake is important in enhancing the lift because the gap functions as a conduit of nozzle generating a jet sheet on the rudder surface.

Twin-jet 대향류에서 메탄 비예혼합화염에 대한 수치적 연구 (Numerical Study on Non-premixed Methane Flames in Twin-jet Counterflow)

  • 천강우;김준홍;정석호
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2004년도 제28회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.49-56
    • /
    • 2004
  • A two-dimensional twin-jet counterflow system has been designed, in which two streams from two double-slit nozzles form a counterflow. This flow system enables one to systematically investigate various effects on non-premixed flames, including the non-premixed flame interaction, the edge flame behavior and the effect of curvature. Non-premixed flame interaction in the twin-jet counterflow system has been investigated numerically for methane fuel diluted with nitrogen. Three types of non-premixed flame(conventional counterflow flame, crossed twin-jet flame and petal shaped flame) were simulated depending on the combination of fuel/oxidizer supply to each nozzle. The extinction characteristics of non premixed methane flame in the twin-jet counterflow have been investigated numerically. The boundary of the existence of petal-shaped flames was identified for the twin-jet counterflow flames. Due to the existence of the unique petal-shaped flames, the extinction boundary for the twin-jet counterflow can be extended significantly compared to that for the conventional counterflow non-premixed flames, through the interaction of two flames. Through the comparison of the crossed twin-jet flame and the conventional counterflow flame, structure of the crossed twin-jet counterflow flame is analysed. Through the comparison of the petal shaped flame and the conventional counterflow flame, the extension of the extinction boundary for the twin-jet counterflow is investigated.

  • PDF

후방 박리기포 감소를 위한 맥동제트의 최적화 연구 (Optimization Study of Pulsating Jet to Reduce the Separation Bubble behind the Fence)

  • 최영호;강인수;김형범
    • 한국가시화정보학회지
    • /
    • 제6권1호
    • /
    • pp.53-58
    • /
    • 2008
  • We carried out the experiments which controled the periodic jet in front of the fence to alter the fence wake. The experiments were performed in circulating water channel and the vertical fence was submerged in the boundary layer. The frequency, jet nozzle distance and speed of jet passing the slit were investigated. Each case divided into 20 phases and phase-averaged results were compared with uncontrolled fence flow. From the results, we found the specific frequency and nozzle distance which were good for reducing the reattachment length. In this case, the reattachment length was decreased 35% compared with the uncontrolled fence flow.

Optical Long-slit Spectroscopy of Parsec-scale Jets from DG Tau

  • Oh, Heeyoung;Pyo, Tae-Soo;Yuk, In-Soo;Park, Byeong-Gon
    • 천문학회보
    • /
    • 제39권2호
    • /
    • pp.75.1-75.1
    • /
    • 2014
  • We present the result of a long-slit spectroscopic study of DG Tau, which is known to emanate parsec-scale outflows. To study the kinematics and physical properties of the jet, we obtained the optical emission lines of $H{\alpha}$, [OI], [NII], and [SII] from HH 158 and HH 702 using the long-slit spectrograph at Bohyunsan Optical Astronomical Observatory. HH 158 shows the peak radial velocity in a range of ~ - 270 to - 30 km s-1. HH 702, located at 11' away from DG Tau shows the velocity of ~ - 80 km s-1. The proper motion velocities of detected knots are estimated through the comparisons with the locations of those knots in the previous studies. We also examine the variations of physical parameters depending on the velocity distribution and the distance from the source using line ratio maps derived from obtained forbidden emission lines.

  • PDF