• Title/Summary/Keyword: Slippage

Search Result 203, Processing Time 0.031 seconds

Slippage on which interface in nanopore filtration?

  • Xiaoxu Huang;Wei Li;Yongbin Zhang
    • Membrane and Water Treatment
    • /
    • v.15 no.1
    • /
    • pp.31-39
    • /
    • 2024
  • The flow in a nanopore of filtration membrane is often multiscale and consists of both the adsorbed layer flow and the intermediate continuum fluid flow. There is a controversy on which interface the slippage should occur in the nanopore filtration: On the adsorbed layer-pore wall interface or on the adsorbed layer-continuum fluid interface? What is the difference between these two slippage effects? We address these subjects in the present study by using the multiscale flow equations incorporating the slippage on different interfaces. Based on the limiting shear strength model for the slippage, it was found from the calculation results that for the hydrophobic pore wall the slippage surely occurs on the adsorbed layer-pore wall interface, however for the hydrophilic pore wall, the slippage can occur on either of the two interfaces, dependent on the competition between the interfacial shear strength on the adsorbed layer-pore wall interface and that on the adsorbed layer-continuum fluid interface. Since the slippage on the adsorbed layer-pore wall interface can be designed while that on the adsorbed layer-continuum fluid interface can not, the former slippage can result in the flux through the nanopore much higher than the latter slippage by designing a highly hydrophobic pore wall surface. The obtained results are of significant interest to the design and application of the interfacial slippage in nanoporous filtration membranes for both improving the flux and conserving the energy cost.

Improvement of Handrail Slippage Characteristics Using Multi-Body Dynamic Analysis Technique (다물체 동역학 해석기술을 이용한 핸드레일의 슬립특성 개선)

  • Park, Chan-Jong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.9
    • /
    • pp.1422-1428
    • /
    • 2004
  • In this paper, computer simulation model of handrail band including pulley-driving system is developed to calculate handrail slippage. This handrail simulation model is validated with test result within operating range and used to predict its slippage behavior with respect to variation of 4 different design parameters considering the applicability into the real handrail system. Based upon this parameter study, optimal condition for handrail slippage improvement is proposed without time-consuming and costly experiments of the real handrail system. And then performance improvement of handrail slippage complied with safety code is achieved after applying the optimal condition into the real handrail band system.

Fuzzy logic approach for estimating bond behavior of lightweight concrete

  • Arslan, Mehmet E.;Durmus, Ahmet
    • Computers and Concrete
    • /
    • v.14 no.3
    • /
    • pp.233-245
    • /
    • 2014
  • In this paper, a rule based Mamdani type fuzzy logic model for prediction of slippage at maximum tensile strength and slippage at rupture of structural lightweight concretes were discussed. In the model steel rebar diameters and development lengths were used as inputs. The FL model and experimental results, the coefficient of determination R2, the Root Mean Square Error were used as evaluation criteria for comparison. It was concluded that FL was practical method for predicting slippage at maximum tensile strength and slippage at rupture of structural lightweight concretes.

A Study on the Seam Strength and Resistance to Slippage of Yarns of Lining Fabrics (의류 안감의 봉합강도 및 실 미끄럼저항에 관한 연구)

  • Uh, Mi-Kyung;Park, Myung-Ja
    • Fashion & Textile Research Journal
    • /
    • v.7 no.4
    • /
    • pp.433-438
    • /
    • 2005
  • Seven commercial lining fabrics normally used in a market were selected: plain-weave fabrics with polyester, nylon, rayon and acetate fiber, and polyester textured yarn, in addition, polyester fabrics with plain, twill and satin weave. Then seam strength, seam efficiency, resistance to slippage of yarns and type of seam destruction were examined related to endurance by textiles in sewing capability of the lining fabrics. In results, as tensile strength was greater, seam strength got greater, which shows tensile strength and seam strength have close relationship. Tensile and seam strength of acetate fabric were the least, but seam efficiency was the greatest. It presents that strong tensile and seam strengths do not show high seam efficiency at the same time. Various types of seam destruction have been shown. When tensile strength of the sewing thread was greater than tensile strength of fabric, fabric destruction was occurred before the sewing thread destruction. When tensile strength of the fabric was greater than seam strength, the sewing thread destruction was occurred. Resistance to slippage of yarns got greater as tensile strength of the fabric got greater. The plain-weave fabric, which tensile strength of fabric was smaller, showed the greater resistance to slippage of yarns than twill and satin weave fabrics. The stretch fabric revealed the optimal lining fabric with the greatest resistance to slippage of yarns.

Application of Tactile Slippage Sensation Algorithm in Robot Hand Control System

  • Yussof, Hanafiah;Jaffar, Ahmed;Zahari, Nur Ismarrubie;Ohka, Masahiro
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.17 no.4
    • /
    • pp.9-15
    • /
    • 2012
  • This paper presents application of a new tactile slippage sensation algorithm in robot hand control system. The optical three-axis tactile sensor is a type of tactile sensor capable of defining normal and shear forces simultaneously. The tactile sensor is mounted on fingertip of robotic hand. Shear force distribution is used to define slippage sensation in the robot hand system. Based on tactile slippage analysis, a new control algorithm was proposed. To improve performance during object handling motions, analysis of slippage direction is conducted. The control algorithm is classified into two phases: grasp-move-release and grasp-twist motions. Detailed explanations of the control algorithm based on the existing robot arm control system are presented. The experiment is conducted using a bottle cap, and the results reveal good performance of the proposed control algorithm to accomplish the proposed object handling motions.

Simulation and Experimental Methods for Media Transport System : Part II, Effect of Normal Force on Slippage of Paper

  • Ryu Jae-Kwan;Lee Soon-Geul;Rhim Sung-Soo;Choi Jin-Hwan;Song In-Ho
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.spc1
    • /
    • pp.403-410
    • /
    • 2005
  • Many daily appliances for examples copiers, printers and ATMs contain the media transport system (MTS) and the slippage between the medium in the MTS deteriorates the performance quality of the whole system. The slippage of the medium in the MTS is affected by many parameters including the friction coefficient between the feeding rollers and the medium, the velocity of the feeding rollers, and the normal force exerted on the medium by feeding rollers. This paper focuses on the effect of the normal force on the slippage while the medium is being fed. For this purpose, we developed a two-dimensional simulation model for a paper feeding system. Using the simulation model, we calculated the slippage of the paper for different normal forces. We have also constructed a testbed of the paper feeding system to verify the simulation results. Experimental results are compared with the simulation results.

The Posterior Cruciate Ligament (PCL) Reconstruction by the Transtibial Tunnel Method using Cadaveric Achilles Tendon Grafts - Evaluation of the Initial Lengthening and the Slippage Ratio due to the Interference Screw Fixation and Double Cross-Pin Fixation - (사체 아킬레스건을 이용한 경골관통터널방식의 후방십자인대 재건술 - 간섭나사 및 이중고정핀 방식에 따른 초기연신 및 활주율 평가 -)

  • Kim, Cheol-Woong;Bae, Ji-Hoon;Oh, Dong-Joon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.4
    • /
    • pp.430-439
    • /
    • 2009
  • Posterior Cruciate Ligament (PCL) plays an important role in knee extension. Rotational instability due to injured PCL can be restored by various PCL reconstruction methods. In this study, the initial lengthening affected by fixation device and location was demonstrated, and furthermore, the slippage and the relationship between lengthening ratio and slippage ratio in the calcaneus and soft tissue fixation methods was newly suggested. Eight specimens of proximal tibia and Achilles tendon grafts were harvested from four cadavers and divided into four groups in regard to the four different types of transtibial fixation techniques. The cyclic load ranged from 50 N to 250 N applied to each graft fixed to proximal tibia in 55 degrees. The initial lengthening ratio to the total elongation has been approximately constant regardless of the fixation methods. The soft tissue fixation method with an interference screw showed about 56.4% slippage ratio to the total elongation and the same method with a double cross-pin presented about 45.4% slippage ratio. The soft tissue fixation method with an interference screw demonstrated approximately 2 mm less total elongation and about 13% more slippage than lengthening because of poor fixation compared to the same method with a double cross-pin.

A Study on Slipping Phenomenon in a Media Transport System (급지 장치에서의 미끄러짐 현상에 대한 연구)

  • 유재관;이순걸;임성수;김시은
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.681-685
    • /
    • 2004
  • A media-feeding (or media-transport) system is a key component in daily consumer systems such as printers, copiers and ATM's. The role of the media-transport system is to feed a medium, which is usually in the form of a thin film, to the main process in a uniform and repeatable manner. Even small slippage between the media and the feeding rollers could significantly degrade the performance of the entire system. The slippage between the medium and the feeding rollers is determined by many parameters which include the friction coefficient between the feeding rollers and the medium material, the angular velocity of the feeding rollers, and the normal force applied by feeding rollers on the medium. This paper investigates the effect of the normal force and the angular velocity of feeding rollers on the slippage of the medium. Authors have constructed a test bed for experiments, which consists of a feeding module and various measuring devices. Using regular paper as media being fed, the authors experimentally measured the slippage of the medium under various normal forces and angular velocities of driving feeding roller. Also the authors developed a novel two-dimensional simulation model for the media-transport system. The paper medium is modeled as a set of multiple rigid bodies interconnected by revolute joints and rotational springs and dampers. Simulations were executed using a multi-body dynamic analysis tool called RecurDy $n^{ⓡ}$. The slippage obtained by the simulation is compared to experimental results.ults.

  • PDF

Fast transport with wall slippage

  • Tang, Zhipeng;Zhang, Yongbin
    • Membrane and Water Treatment
    • /
    • v.12 no.1
    • /
    • pp.37-41
    • /
    • 2021
  • This paper presents the multiscale calculation results of the very fast volume transport in micro/nano cylindrical tubes with the wall slippage. There simultaneously occurs the adsorbed layer flow and the intermediate continuum fluid flow which are respectively on different scales. The modeled fluid is water and the tube wall is somewhat hydrophobic. The calculation shows that the power loss on the tube no more than 1.0 Watt/m can generate the wall slippage even if the fluid-tube wall interfacial shear strength is 1 MPa; The power loss on the scale 104 Watt/m produces the volume flow rate through the tube more than one hundred times higher than the classical hydrodynamic theory calculation even if the fluid-tube wall interfacial shear strength is 1 MPa. When the wall slippage occurs, the volume flow rate through the tube is in direct proportion to the power loss on the tube but in inverse proportion to the fluid-tube wall interfacial shear strength. For low interfacial shear strengths such as no more than 1 kPa, the transport in the tube appears very fast with the magnitude more than 4 orders higher than the classical calculation if the power loss on the tube is on the scale 104 Watt/m.

Water transport through hydrophobic micro/nanoporous filtration membranes on different scales

  • Mian, Wang;Yongbin, Zhang
    • Membrane and Water Treatment
    • /
    • v.13 no.6
    • /
    • pp.313-320
    • /
    • 2022
  • Theoretical calculation results are presented for the enhancement of the water mass flow rate through the hydrophobic micro/nano pores in the membrane respectively on the micrometer and nanometer scales. The water-pore wall interfacial slippage is considered. When the pore diameter is critically low (less than 1.82nm), the water flow in the nanopore is non-continuum and described by the nanoscale flow equation; Otherwise, the water flow is essentially multiscale consisting of both the adsorbed boundary layer flow and the intermediate continuum water flow, and it is described by the multiscale flow equation. For no wall slippage, the calculated water flow rate through the pore is very close to the classical hydrodynamic theory calculation if the pore diameter (d) is larger than 1.0nm, however it is considerably smaller than the conventional calculation if d is less than 1.0nm because of the non-continuum effect of the water film. When the driving power loss on the pore is larger than the critical value, the wall slippage occurs, and it results in the different scales of the enhancement of the water flow rate through the pore which are strongly dependent on both the pore diameter and the driving power loss on the pore. Both the pressure drop and the critical power loss on the pore for starting the wall slippage are also strongly dependent on the pore diameter.