• 제목/요약/키워드: Slip length

검색결과 251건 처리시간 0.032초

Bonding between high strength rebar and reactive powder concrete

  • Deng, Zong-Cai;Jumbe, R. Daud;Yuan, Chang-Xing
    • Computers and Concrete
    • /
    • 제13권3호
    • /
    • pp.411-421
    • /
    • 2014
  • A central pullout test was conducted to investigate the bonding properties between high strength rebar and reactive powder concrete (RPC), which covered ultimate pullout load, ultimate bonding stress, free end initial slip, free end slip at peak load, and load-slip curve characteristics. The effects of varying rebar buried length, thickness of protective layer and diameter of rebars on the bonding properties were studied, and how to determine the minimum thickness of protective layer and critical anchorage length was suggested according the test results. The results prove that: 1) Ultimate pull out load and free end initial slip load increases with increase in buried length, while ultimate bonding stress and slip corresponding to the peak load reduces. When buried length is increased from 3d to 4d(d is the diameter of rebar), after peak load, the load-slip curve descending segment declines faster, but later the load rises again exceeding the first peak load. When buried length reaches 5d, rebar pull fracture occurs. 2) As thickness of protective layer increases, the ultimate pull out load, ultimate bond stress, free end initial slip load and the slip corresponding to the peak load increase, and the descending section of the curve becomes gentle. The recommended minimum thickness of protective layer for plate type members should be the greater value between d and 10 mm, and for beams or columns the greater value between d and 15 mm. 3) Increasing the diameter of HRB500 rebars leads to a gentle slope in the descending segment of the pullout curve. 4) The bonding properties between high strength steel HRB500 and RPC is very good. The suggested buried length for test determining bonding strength between high strength rebars and RPC is 4d and a formula to calculate the critical anchorage length is established. The relationships between ultimate bonding stress and thickness of protective layer or the buried length was obtained.

보조 띠철근으로써 V-타이의 부착-미끄러짐 관계 실험 (Bond-Slip Tests of V-ties as a Supplementary Lateral Reinforcement)

  • 권혁진;양근혁
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2017년도 추계 학술논문 발표대회
    • /
    • pp.157-158
    • /
    • 2017
  • This tests examined bond stress-slip relationship of V-ties embedded into concrete as a supplementary lateral reinforcement proposed for ductility of concrete flexural members. The different leg shapes of V-ties were prepared as a test parameter. The V-tie with pressed end-legs exhibited 28% higher bond strength than the conventional V-ties, whereas bond stress-slip curves were insignificantly affected by the embedment length of V-ties.

  • PDF

PS 강선의 정착부착성능에 관한 해석 모델 (Analytical Model for Transfer Bond Performance of Prestressing Strands)

  • 유승룡
    • 콘크리트학회지
    • /
    • 제6권4호
    • /
    • pp.92-101
    • /
    • 1994
  • PS 강선의 정착부착성능에 대한 새로운 해석방법을 소개하였다. 이 모델에서, 정착부착 길이는 탄생 영역과 소성영역으로 구분되었다. 탄성영역에서 부착응력은 최대 부착응력에 도달된 때까지 슬립과 비례하여 증가하고, 소성영역에선 최대 부착응력으로 균일하게 분포됨을 가정하였다. 정착부착 길이 내에서 부착응력, 슬립, 강선응력, 콘크리트응력 분포를 결과를 얻을 수 있었고, 전체 정착부착 길이와 자유단에서 슬립에 대한 결과치는 최근 Cousins et al.의 실험 결과치와 유사하였다.

탄소섬유 FRP판과 현장타설 고인성섬유보강콘크리트 사이의 단순 부착슬립 관계 (Simple Bond Stress and Slip Relationship between CFRP Plank and Cast-in-Place DFRCC)

  • 유준상;유승운
    • 복합신소재구조학회 논문집
    • /
    • 제7권1호
    • /
    • pp.25-31
    • /
    • 2016
  • Bond stress between cast-in-place ductile fiber reinforced cementitious composites and CFRP plank were experimentally analyzed. As failure shape, the mixture of failure between CFRP plank and epoxy, and failure between concrete and epoxy was shown. In case of RFCON from the suggested simple bond slip relationship, the maximum average bond stress was 5.39MPa, the initial slope was 104.09MPa/mm, and the total slip length was 0.19mm. PPCON showed the maximum average bond stress of 4.31MPa, the initial slope of 126.67MPa/mm, and the total slip length of 0.26mm, while RFCON+ appeared to have 8.71MPa, 137.69MPa/mm, 0.16mm. PPCON+ had 6.19MPa maximum average bond stress, 121.56MPa/mm initial slope, and 0.34mm total slip length. To comprehend the behavior of composite structure of FRP and concrete, local bond slip relation is necessary, and thus a simple relation is suggested to be easily applied on hybrid composite system.

Study on push-out test and bond stress-slip relationship of circular concrete filled steel tube

  • Yin, Xiaowei;Lu, Xilin
    • Steel and Composite Structures
    • /
    • 제10권4호
    • /
    • pp.317-329
    • /
    • 2010
  • According to the results of 9 circular concrete filled steel tube (CFT) push-out tests, a new theoretical model for average bond stress versus free end slip curve is proposed. The relationship between verage bond stress and free end slip is obtained considering some varying influential parameters such as slenderness ratio and diameter-to-thickness ratio. Based on measured steel tube strain and relative slip at different longitudinal positions, the distribution of bond stress and relative slip along the length of steel tube is obtained. An equation for predicting the varying bond-slip relationship along longitudinal length and a position function reflecting the variation are proposed. The presented method can be used in the application of finite element method to analyze the behavior of CFT structures.

미끄럼 방지용 금속 그레이팅의 구조적 안정성 평가 (Structural Stability Estimation of Non-slip Steel Grating)

  • 손인수
    • 한국산업융합학회 논문집
    • /
    • 제24권4_2호
    • /
    • pp.501-507
    • /
    • 2021
  • In this study, In order to prevent the safety accidents caused by the sliding, to develop the non-slip grating, the stability judgment based on the span length of the grating and the gap of the bearing bar is performed. The structural analysis of Grating was carried out in accordance with the provisions set out in Grating's load-bearing test conditions. As the span length increases, the deflection increases and the stress and span length tend to be proportional to each other. It was shown that the larger the span, the linear increase in stress and exponential increase in deformation of grating. The maximum stress of grating was approximately 58.2 MPa, indicating a very stable safety rate of about 4.3 compared to the yield strength of the grating material. Based on these results, it will be able to be utilized as the basic data for determining the optimal dimensions of non-slip grading by performing optimal designs in the future.

저 레이놀즈 수에서 실린더 경계 유속조건에 따른 흐름 특성 (Flow Characteristics According to Velocity Conditions of Cylinder Boundary Under Low Reynolds Number)

  • 송창근;서일원;김태원
    • 대한토목학회논문집
    • /
    • 제33권6호
    • /
    • pp.2267-2275
    • /
    • 2013
  • 기존의 천수흐름 해석 상용모형에서는 내부 경계조건을 단순히 완전활동조건으로 가정하여 유체의 흐름을 해석함으로써 구조물 주위에서의 유속, 와도, 수위, 전단력의 분포, 항력 및 양력의 시간에 따른 변화 등을 올바르게 해석하지 못하였다. 본 연구에서는 구조물 주위에서의 흐름특성을 정확하게 예측할 수 있는 유한요소모형을 개발하고, 구조물에서의 경계조건을 활동길이를 이용한 부분활동조건으로 묘사하여 내부경계조건에 따른 원형 실린더 후면에서의 층류 흐름특성을 분석하였다. 종횡방향 유속 및 와도의 시간에 따른 변화, 후류길이, 활동길이에 따른 와류열의 변화와 질량보존율을 비교한 결과 완전활동조건을 부여한 경우에는 와류열이 전혀 형성되지 않고 완전한 층류흐름이 발생하였다. 부분활동조건을 입력한 경우 실린더 표면에서의 유속분포가 변화되어 전단력의 크기와 와도의 발생에 영향을 미치므로 무활조건을 부여한 경우에 비해 와류열의 발생 주기가 짧아졌다. 최대 질량보존 오차는 무활조건을 적용한 경우 0.73%로 나타났으며, 무활조건에 비해 부분활동조건을 부여한 경우의 오차율이 최대 0.21% 감소하였다.

Determination of stress state in chip formation zone by central slip-line field

  • Andrey Toropov;Ko, Sung-Lim
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.577-580
    • /
    • 2003
  • Stress state of chip formation zone is one of the main problems in metal cutting mechanics. In two-dimensional case this process is usually considered as consistent shears of work material along single of several shear surfaces. separating chip from workpiece. These shear planes are assumed to be trajectories of maximum shear stress forming corresponding slip-line field. This paper suggests new approach to the constriction of slip-line field, which Implies uniform compression in chip formation zone. On the base of given model it has been found that imaginary shear line in orthogonal cutting is close to the trajectory of maximum normal stress and the problem about its determination have been considered. It has been shown that there is a second central slip-line field inside chip, which corresponds well to experimental data about stress distribution on tool rake face and tool-chip contact length. The suggested model could be useful in solution of various problems of machining.

  • PDF

Experimental Observation on Bond-Slip Behavior between Concrete and CFRP Plate

  • Yang, Dong-Suk;Hong, Sung-Nam;Park, Sun-Kyu
    • International Journal of Concrete Structures and Materials
    • /
    • 제1권1호
    • /
    • pp.37-43
    • /
    • 2007
  • This paper discusses the failure mode of reinforced concrete beams strengthened with composite materials based on six experimental set-ups to determine the FRP-to-concrete bond strength. Interfacial bond behavior between concrete and CFRP plates was discussed. Shear test were performed with different concrete compressive strengths (21 MPa and 28 MPa) and different bonding length (100 mm, 150 mm, 200 mm, and 250 mm). Shear test results indicate that the effective bond length (the bond length beyond which the ultimate load does not increase) was estimated as $196{\sim}204\;mm$ through linear regression analysis. Failure mode of specimens occurred due to debonding between concrete and CFRP plates. Maximum bond stress is calculated as about $3.0{\sim}3.3\;MPa$ from the relationships between bond stress and slip. Finally, the interfacial bond-slip model between CFRP plates and concrete, which is governed debonding failure, has been estimated from shear tests. Average bond stress was about $1.86{\sim}2.04\;MPa$, the volume of slip between CFRP plate and concrete was about $1.45{\sim}1.72\;mm$, and the fracture energy was found to be about $1.35{\sim}1.71\;N/mm$.

Microflow of dilute colloidal suspension in narrow channel of microfluidic-chip under Newtonian fluid slip condition

  • Chun Myung-Suk;Lee Tae Seok;Lee Kangtaek
    • Korea-Australia Rheology Journal
    • /
    • 제17권4호
    • /
    • pp.207-215
    • /
    • 2005
  • We present a finite difference solution for electrokinetic flow in rectangular microchannels encompassing Navier's fluid slip phenomena. The externally applied body force originated from between the nonlinear Poisson-Boltzmann field around the channel wall and the flow-induced electric field is employed in the equation of motion. The basic principle of net current conservation is applied in the ion transport. The effects of the slip length and the long-range repulsion upon the velocity profile are examined in conjunction with the friction factor. It is evident that the fluid slip counteracts the effect by the electric double layer and induces a larger flow rate. Particle streak imaging by fluorescent microscope and the data processing method developed ourselves are applied to straight channel designed to allow for flow visualization of dilute latex colloids underlying the condition of simple fluid. The reliability of the velocity profile determined by the flow imaging is justified by comparing with the finite difference solution. We recognized the behavior of fluid slip in velocity profiles at the hydrophobic surface of polydimethylsiloxane wall, from which the slip length was evaluated for different conditions.