• Title/Summary/Keyword: Slip Speed

Search Result 371, Processing Time 0.028 seconds

Power Control of the DFIG Using the Rotor Exciting Control (회전자 여자제어를 이용한 풍력발전 DFIG의 출력제어)

  • 이우석;오철수
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.13 no.3
    • /
    • pp.93-100
    • /
    • 1999
  • Wide operating range and speed control is needed for wind power generating and a Doubly Fed Induction Generator(DFlG) has good adaptivity for that purpose. Ths paper investigates speed and output stator power control using a grid connected to a DFlG in super-synchronous speed regions, by control of both magnitude and frequency of the voltage fed to the rotor. For the speed control analysis, torque simulation is perforrred whereby the different slip between qJernting rmtor driving frequency and synchronous frequency of M-G system awlied. To keep the output rating of the generator, the exciting frequency and voltage attenuation are arolied.rolied.

  • PDF

Detection of Rotating Speed of Induction Motor Using the Rotor Slot Harmonic (회전자 슬롯 고조파를 이용한 유도전동기의 회전속도 검출)

  • Yang, Chul-Oh;Lee, Gyeong-Seok;Lee, Dae-Sung;Parkk, Kyu-Nam;Song, Myung-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.2077-2078
    • /
    • 2011
  • Now a days, the induction motor is widely used in industry automation. Without monitoring the motor fault, maintenance cost is increased undesirably high. The slip frequency is included in the feature frequency, so rotating rotor speed is needed. In this paper, a sensorless motor speed estimation method, rotor slot harmonic(RSH) method is suggested and a solution of rotor bar diagnosis is proposed for motor running with light-load. When the rotor is rotating, it shows the harmonic signal of back-emf voltage related with number of rotor slot. So from the power spectrum of current signal, we can find the rotor speed.

  • PDF

A STUDY ON THE VECTOR CONTROL OF INDUCTION MOTOR BASED ON SPEED ESTIMATION (유도전동기의 속도 추정 벡터제어에 관한 연구)

  • Sul, Seung-Ki;Kwon, Bong-Hyun;Kang, Jun-Koo
    • Proceedings of the KIEE Conference
    • /
    • 1989.11a
    • /
    • pp.264-267
    • /
    • 1989
  • In the vector controlled induction machine drives, mechanical speed sensors such as shaft encoder and resolver have been used. However, the mechanical speed sensors present some problems and restrict the wide applications of high performance AC drives. This paper describes the vector control strategy with the speed estimation algorithm in which motor slip frequency is calculated. Also, the angle deviation of the rotor flux vector is calculated and instaneously compensated to keep the q axis flux zero in the rotationary reference frame.

  • PDF

Study on Driving System for Electric Vehicle (전기자동차용 2중 회전자형 구동시스템에 관한 연구)

  • Kim, Jung-Hong;Moon, Jae-Won;Jung, Tae-Uk;Ahn, Jin-Woo;Hwang, Young-Moon
    • Proceedings of the KIEE Conference
    • /
    • 1995.07a
    • /
    • pp.9-11
    • /
    • 1995
  • In order to achieve a essential requirement for the driving system of electric vehicles, that is, starting pick-up ability, a wound-type induction motor with double-rotor structure is proposed. Slip Power Recovery system is adopted to improve the efficiency in the low speed range and to control speed of this system. Theoretical analysis and experimental results from 300[W] prototype motor is presented to verify the improvement of pick-up ability and high-efficiency driving characteristics through the wide speed range, especially under the low speed range.

  • PDF

Speed-Sensorless Induction Motor Control System using a Rotor Speed Compensation (회전자 속도보상을 이용한 센서리스 유도전동기 제어 시스템)

  • Jeong Gang-Youl
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.3
    • /
    • pp.154-161
    • /
    • 2005
  • This paper proposes a speed-sensorless induction motor control system using a rotor speed compensation. To explain the proposed system, this paper describes an induction motor model in the synchronous reference frame for the vector control. The rotor flux is estimated by the rotor flux observer using the reduced-dimensional state estimator technique. The estimated rotor speed is directly obtained from the electrical frequency, the slip frequency, and the rotor speed compensation with the estimated q-axis rotor flux. The error of the rotor time constant is indirectly reflected in the rotor speed compensation using the compensation of the flux error angle. To precisely estimate the rotor flux, the actual value of the stator resistance, whose actual variation is reflected, is derived. An implementation of pulse-width modulation (PWM) pulses using an effective space vector modulation (SVM) is briefly mentioned. For fast calculation and improved performance of the proposed algorithm, all control functions are implemented in software using a digital signal processor (DSP) with its environmental circuits. Also, it is shown through experimental results that the proposed system gives good performance for the speed-sensorless induction motor control.

Transient Analysis of Inverter-fed Three Phase Squirrel Cage induction Motor Using A Combined Method of Finite Element Method and Equivalent Circuit (유한요소법과 등가회로법의 결합을 이용한 인버터 구동 3상 농형 유도전동기의 과도 특성 해석)

  • Cho, Y.;Kwon, B.I.;Kim, J.W.;Kim, B.T.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.805-807
    • /
    • 2002
  • In this paper, a method for an accurate and fast transient analysis, which employs a single slot model for the rotor, is presented. The equivalent circuit parameters are extracted from a combined method of F. E. M and equivalent circuit on 1 slot rotor boundary condition. Two kinds of circuit parameters for each slip are applied to equivalent circuit controlled by variable-voltage variable- frequency. One is the constant parameters at rated speed, and the other is the parameters varying in accordance with slip-frequency. The computer characteristics of the suggested method for four-pole 1.5KW induction motor are compared with those of Equivalent circuit for the transient analysis.

  • PDF

A Study on the Feed Characteristics of Twist Friction Driver (Twist Friction Driver의 이송특성에 관한 연구)

  • Jeong, Jun-Hui;Lee, Eung-Suk;An, Dong-Yul
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.934-939
    • /
    • 2004
  • This paper propose a study on the Feed Characteristics of Twist Friction Driver. We are using Twist Friction Driving mechanism system. The system consists of Twist Friction Driver elements such as driving shaft, driven roller, Spring for pre-load, Air bearing guide, Servo motor, and measuring devices such as Encoder of Servo motor, Laser interferometer, LVDT . The Twist Friction driver is mechanically simple and very quiet at high speed, and has low pre-load. So The Twist Friction driver can materialize an ultra precision feed-resolution. The feed characteristics of the driver is determined by slip and angular error, backlash.

  • PDF

Development of the Active Steering Tilt Controller for Stability of the Narrow Commuter Vehicles (폭이 좁은 차량의 안정성 향상을 위한 능동형 스티어링 기울임 제어기의 개발)

  • 소상균
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.2
    • /
    • pp.107-117
    • /
    • 1998
  • As the traffic congestion and parking problems in urban areas are increased the tall and narrow commuter vehicles have interested as a means to increase the utilization of existing freewa- ys and parking facilities. However, in hard cornering those vehicles could reduce stability against overturning compared to conventional vehicles. This tendency can be mitigated by tilting the body toward the inside of the turn. In this paper those tilting vehicles are considered in which at speed at least, the tilt angle is controlled by steering the front wheels. In other word, if the driver turns the steering wheel the tilt controller automatically steers the road wheel to tilt the body inside of the turn. Also, the dynamic tilting vehicle model with tire slip angles is constructed by adding the roll degree of freedom. Finally, through computer simulation the behaviors of the tilting vehicles are investigated.

  • PDF

Vehicle Running Characteristic Simulator using Induction Motor (유도전동기를 이용한 차량주행특성 시뮬레이터)

  • Byun, Yeun-Sub;Kim, Young-Chol;Mok, Jei-Kyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.10
    • /
    • pp.1903-1914
    • /
    • 2011
  • In this paper, we propose vehicle running characteristic simulator. The developed simulator is configured by two induction motors which are directly coupled with each other. One motor is to simulate the vehicle drive and another motor is to simulate the vehicle dynamic load including running resistance, gradient resistance and adhesive characteristics between rail and wheel. The running characteristics of vehicle are modeled by numerical formulas. These are programed by software of embedded controller. Thus, it is possible to change several running characteristics during the running test freely and instantly. To evaluate the feasibility of the simulator, the experiments on slip and adhesion coefficient are performed. Additionally the adhesion control and speed control of vehicle are tested with simulator. Experimental results show that the simulator can produce the driving characteristics similar to the vehicle system.

Development of Tension Leveller Condition Monitoring and Diagnosis System (TENSION LEVELLER 상태감시 및 진단시스템 개발)

  • 신남호;김수광;최석욱
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.350-354
    • /
    • 1995
  • The Tension Leveller of Cold Rolling Mill In POSCO performs levelling the strip in high speed line. But minor variations in operating condition of driving machines such as motor, gear box, and support bearings, a small gap-variation of supporter and strip slip by poor roll revolutions can cause serious problems in the quality of strip. In this study, firstly, A condition monitoring standard for each sensor is made through with the detail analysis of vibration and strip slip. Secondly, An automatic monitoring and diagnosing system was developed to monitor the condition of Tension Leveller, and diagnose the cause of abnormal condition. Finally, A diagnosing algorithm for abnormal condition and man-machine interface (MMI) for easy operation are developed.

  • PDF