• Title/Summary/Keyword: Slip Parameter

Search Result 164, Processing Time 0.023 seconds

Non-linear analysis of composite steel-concrete beams with incomplete interaction

  • Cas, Bojan;Bratina, Sebastjan;Saje, Miran;Planinc, Igor
    • Steel and Composite Structures
    • /
    • v.4 no.6
    • /
    • pp.489-507
    • /
    • 2004
  • The flexibility of the connection between steel and concrete largely influences the global behaviour of the composite beam. Therefore the way the connection is modelled is the key issue in its structural analysis. Here we present a new strain-based finite element formulation in which we consider non-linear material and contact models. The computational efficiency and accuracy of the formulation is proved with the comparison of our numerical results with the experimental results of Abdel Aziz (1986) obtained in a full-scale laboratory test. The shear connectors are assumed to follow a non-linear load-slip relationship proposed by Ollgaard et al. (1971). We introduce the notion of the generalized slip, which offers a better physical interpretation of the behaviour of the contact and gives an additional material slip parameter. An excellent agreement of experimental and numerical results is obtained, using only a few finite elements. This demonstrates that the present numerical approach is appropriate for the evaluation of behaviour of planar composite beams and perfect for practical calculations.

Flow of casson nanofluid along permeable exponentially stretching cylinder: Variation of mass concentration profile

  • Iqbal, Waheed;Jalil, Mudassar;Khadimallah, Mohamed A.;Hussain, Muzamal;Naeem, Muhammad N.;Naim, Abdullah F. Al;Mahmoud, S.R.;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • v.38 no.1
    • /
    • pp.33-45
    • /
    • 2021
  • The Runge-Kutta method of 6th-order has been employed in this paper to analyze the flow of Casson nanofluid along permeable exponentially stretching cylinder. The modeled PDEs are changed into nonlinear ODEs through appropriate nonlinear transformations. The aim of the paper is to investigate the effects of different parameters such as Casson fluid parameter, slip parameter, suction parameter, Prandtl number, Lewis number, Brownian motion parameter, and thermophoresis parameter, with the variation of mass concentration profile. Numerical results are attained using a renowned numerical scheme shooting technique and for the authenticity of present methodlogy, the results are verified with earlier open text.

Numerical calculations for bioconvection MHD Casson nanofluid flow: Study of Brownian motion

  • Hussain, Muzamal;Sharif, Humaira;Khadimallah, Mohamed Amine;Ayed, Hamdi;Banoqitah, Essam Mohammed;Loukil, Hassen;Ali, Imam;Mahmoud, S.R.;Tounsi, Abdelouahed
    • Computers and Concrete
    • /
    • v.30 no.2
    • /
    • pp.143-150
    • /
    • 2022
  • In this paper, the non-linear mathematical problem is solved via numerical scheme by utilizing shooting method. Brownian diffusion and thermophoresis along mass and heat transfer are accounted for. Non-linear expression is reduced via non-dimensional variables. The simplified ordinary differential equations are tackled by shooting technique. Behavior of distinct influential parameters is investigated graphically and analyzed for temperature and concentration profile. Our finding indicates that temperature profile is enhanced for the thermophoresis, Brownian motion coefficient, Prandtl number, Eckert number and temperature slip parameter. Comparison of numerical technique with the extant literature is made and an acceptable agreement is attained. Graphs are plotted to examine the influence of these parameters.

Semi-active friction dampers for seismic control of structures

  • Kori, Jagadish G.;Jangid, R.S.
    • Smart Structures and Systems
    • /
    • v.4 no.4
    • /
    • pp.493-515
    • /
    • 2008
  • Semi-active control systems have attracted a great deal of attention in recent years because these systems can operate on battery power alone, proving advantageous during seismic events when the main power source of the structure may likely fail. The behavior of semi-active devices is often highly non-linear and requires suitable and efficient control algorithm. This paper presents the comparative study and performance of variable semi-active friction dampers by using recently proposed predictive control law with direct output feedback. In this control law, the variable slip force of semi-active variable friction damper is kept slightly lower than the critical friction force, which allows the damper to remain in the slip state during an earthquake, resulting in improved energy dissipation capability. This control algorithm is able to produce a continuous and smooth slip forces for a variable friction damper. The numerical examples include a structure controlled with multiple variable semi-active friction dampers and with multiple passive friction dampers. A parameter, gain multiplier defined as the ratio of damper force to critical damper control force, is investigated under four different real earthquake ground motions, which plays an important role in the present control algorithm of the damper. The numerically evaluated optimum parametric value is considered for the analysis of the structure with dampers. The numerical results of the variable friction dampers show better performance over the passive dampers in reducing the seismic response of structures.

Nonlinear Analysis of Mixed Structure with Connection Slip (슬립을 고려한 혼합구조 접합부의 비선형 해석)

  • Sung Jae-Jin;Huh Taik-Nyung;Lee Yoon-Soo;Cho Sung-Yong
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.615-622
    • /
    • 2006
  • As construction technique and design are developing, the bridge tend to be longer, and also the type of bridge is verity. Steel and concrete combination improve the mechanics characteristic and economical efficient which Hybrid Structure divide Mixed Structure with Composite Structure. The connected section of the Mixed Structure should integrate steel and concrete that should show the same behavior as well, And also this connection needs big interna1 force and stiffness because it used to be a most dangerous section. This study carry out a nonlinear analysis technique with slip, check out each different type of section force's transfer mechanism on the connection. And this analysis was carried out using parameter that are front plate thickness, connection length, filled concrete strength and so on. We confirmed the profitable type of connection is front backward type. The biggest stiffness and certain stress transmission are showed at the ratio 0.075 between total length and connection length, and also most economical front plate thickness is judged when it set three times thicker than flange.

  • PDF

INFLUENCE OF SLIP CONDITION ON RADIATIVE MHD FLOW OF A VISCOUS FLUID IN A PARALLEL POROUS PLATE CHANNEL IN PRESENCE OF HEAT ABSORPTION AND CHEMICAL REACTION.

  • VENKATESWARLU, M.;VENKATA LAKSHMI, D.;DARMAIAH, G.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.20 no.4
    • /
    • pp.333-354
    • /
    • 2016
  • The present investigation deals, heat and mass transfer characteristics with the effect of slip on the hydromagnetic pulsatile flow through a parallel plate channel filled with saturated porous medium. Based on the pulsatile flow nature, exact solution of the governing equations for the fluid velocity, temperature and concentration are obtained by using two term perturbation technique subject to physically appropriate boundary conditions. The expressions of skin friction, Nusselt number and Sherwood number are also derived. The numerical values of the fluid velocity, temperature and concentration are displayed graphically whereas those of shear stress, rate of heat transfer and rate of mass transfer at the plate are presented in tabular form for various values of pertinent flow parameters. By increasing the slip parameter at the cold wall the velocity increases whereas the effect is totally reversed in the case of shear stress at the cold wall.

Time-Dependent Behavior of Partially Composite Beams (부분 강합성보의 시간의존적 거동해석)

  • 곽효경;서영재
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.13 no.4
    • /
    • pp.461-473
    • /
    • 2000
  • This paper deals with a numerical model for the time-dependent analysis of steel and concrete composite beams with partial shear connection. A linear partial interaction theory is adopted in formulation of structural slip behavior, and the effect of concrete creep and shrinkage are considered. The proposed model is effective in simulating the slip behavior, combined with concrete creep and shrinkage, of multi-span continuous composite beams. Finally, correlation studies and several parameter studies are conducted with the objective to establish the validity of the proposed model.

  • PDF

Experimental study on acoustic emission characteristics of reinforced concrete components

  • Gu, Aijun;Luo, Ying;Xu, Baiqiang
    • Smart Structures and Systems
    • /
    • v.16 no.1
    • /
    • pp.67-79
    • /
    • 2015
  • Acoustic emission analysis is an effective technique for monitoring the evolution of damage in a structure. An experimental analysis on a set of reinforced concrete beams under flexural loading was carried out. A mixed AE analysis method which used both parameter-based and signal-based techniques was presented to characterize and identify different failure mechanisms of damage, where the signal-based analysis was performed by using the Hilbert-Huang transform. The maximum instantaneous energy of typical damage events and the corresponding frequency characteristics were established, which provided a quantitative assessment of reinforced concrete beam using AE technique. In the bending tests, a "pitch-catch" system was mounted on a steel bar to assess bonding state of the steel bar in concrete. To better understand the AE behavior of bond-slip damage between steel bar and concrete, a special bond-slip test called pullout test was also performed. The results provided the basis of quantitative AE to identify both failure mechanisms and level of damages of civil engineering structures.

Static and quasi-static slope stability analyses using the limit equilibrium method for mountainous area

  • Hosung Shin
    • Geomechanics and Engineering
    • /
    • v.34 no.2
    • /
    • pp.187-195
    • /
    • 2023
  • Intensive rainfall during the summer season in Korea has triggered numerous devastating landslides outside of downtown in mountainous areas. The 2D slope stability analysis that is generally used for cut slopes and embankments is inadequate to model slope failure in mountainous areas. This paper presents a new 3D slope stability formulation using the global sliding vector in the limit equilibrium method, and it uses an ellipsoidal slip surface for static and quasi-static analyses. The slip surface's flexibility of the ellipsoid shape gives a lower FS than the spherical failure shape in the Fellenius, Bishop, and Janbu's simplified methods. The increasing sub-columns of each column tend to increase the FS and converge to a steady value. The symmetrical geometric conditions of the convex turning corners do not indicate symmetrical failure of the surface in 3D analysis. Pseudo-static analysis shows that the horizontal seismic force decreases the FS and increases the mass volume at the critical failure state. The stability index takes the FS and corresponding sliding mass into consideration to assess the potential risk of slope failure in complex mountainous terrain. It is a valuable parameter for selecting a vulnerable area and evaluating the overall risk of slope failure.

Windmilling Characteristics of Centrifugal-Flow Turbojets

  • Yoo, Il-Su;Song, Seung Jin;Lim, Jin Shik
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.11
    • /
    • pp.2021-2031
    • /
    • 2004
  • A new nondimensional method for predicting the windmilling performance of centrifugal -flow turbojet engines in flight has been developed. The method incorporates loss correlations to estimate the performance of major engine components. Given basic engine geometry, flight Mach number, and ambient conditions, this method predicts transient and steady-state windmilling performance. Thus, this method can be used during the preliminary design stage when detailed hardware geometry and component performance data are not yet available. A nondimensional time parameter is newly defined, and using this parameter, the transient performance of different types of turbojets (e.g. centrifugal vs. axial) is compared. In addition, the predictions' sensitivity to loss correlations, slip factors, and inlet ambient temperatures are analyzed.