Browse > Article
http://dx.doi.org/10.12989/scs.2021.38.1.033

Flow of casson nanofluid along permeable exponentially stretching cylinder: Variation of mass concentration profile  

Iqbal, Waheed (Department of Mathematics, Govt. College University Faisalabad)
Jalil, Mudassar (Department of Mathematics, COMSATS Institute of Information Technology)
Khadimallah, Mohamed A. (Prince Sattam Bin Abdulaziz University, College of Engineering, Civil Engineering Department)
Hussain, Muzamal (Department of Mathematics, Govt. College University Faisalabad)
Naeem, Muhammad N. (Department of Mathematics, Govt. College University Faisalabad)
Naim, Abdullah F. Al (Department of Physics, College of Science, King Faisal University)
Mahmoud, S.R. (GRC Department, Faculty of Applied studies, King Abdulaziz University)
Tounsi, Abdelouahed (YFL (Yonsei Frontier Lab), Yonsei University)
Publication Information
Steel and Composite Structures / v.38, no.1, 2021 , pp. 33-45 More about this Journal
Abstract
The Runge-Kutta method of 6th-order has been employed in this paper to analyze the flow of Casson nanofluid along permeable exponentially stretching cylinder. The modeled PDEs are changed into nonlinear ODEs through appropriate nonlinear transformations. The aim of the paper is to investigate the effects of different parameters such as Casson fluid parameter, slip parameter, suction parameter, Prandtl number, Lewis number, Brownian motion parameter, and thermophoresis parameter, with the variation of mass concentration profile. Numerical results are attained using a renowned numerical scheme shooting technique and for the authenticity of present methodlogy, the results are verified with earlier open text.
Keywords
mass concentration; nanofluid; R-K method of $6^{th}$-order; fluid flow;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Sharma, N., Mahapatra, T.R., Panda, S.K. and Hirwani, C.K. (2018c), "Acoustic radiation and frequency response of higher-order shear deformable multilayered composite doubly curved shell panel-an experimental validation", Appl. Acoustics, 133, 38-51.   DOI
2 Sharma, N., Mahapatra, T.R., Panda, S.K. and Katariya, P. (2020b), "Thermo-acoustic analysis of higher-order shear deformable laminated composite sandwich flat panel", J. Sandw. Struct. Mater., 22(5), 1357-1385.   DOI
3 Sharma, N., Mahapatra, T.R., Panda, S.K. and Mehar, K. (2018d), "Evaluation of vibroacoustic responses of laminated composite sandwich structure using higher-order finite-boundary element model", Steel Compos. Struct., 28(5), 629-639. https://doi.org/10.12989/scs.2018.28.5.629.   DOI
4 Simsek M. (2011), "Forced vibration of an embedded single-walled carbon nanotube traversed by a moving load using nonlocal Timoshenko beam theory", Steel Compos. Struct., 11(1), 59-76. https://doi.org/10.12989/scs.2011.11.1.059.   DOI
5 Sofiyev, A.H., Yucel, K., Avcar, M. and Zerin, Z. (2006), "The dynamic stability of orthotropic cylindrical shells with nonhomogenous material properties under axial compressive load varying as a parabolic function of time", J. Reinforced Plast. Compos., 25(18), 1877-1886. https://doi.org/10.1177/0731684406069914.   DOI
6 Tarakcioglu, N., Gemi, L. and Yapici, A. (2005), "Fatigue failure behavior of glass/epoxy±55 filament wound pipes under internal pressure", Compos. Sci. Technol., 65(3-4), 703-708. https://doi.org/10.1016/j.compscitech.2004.10.002.   DOI
7 Wang, C.Y. (1988), "Fluid flow due to a stretching cylinder", Phy. Fluids, 31, 466-468. https://doi.org/10.1063/1.866827   DOI
8 Wang, C.Y. and Ng, C.O. (2011), "Slip flow due to a stretching cylinder", Int. J. Non-Lin. Mech., 46, 1191-1194. https://doi.org/10.1016/j.ijnonlinmec.2011.05.04.   DOI
9 lmtiaz, M., Hayat, T. and Alsaedi, A. (2016), "Mixed convection flow of Casson nanofluid over a stretching cylinder with convective boundary conditions", Adv. Power Tech., 27(5), 2245-2256. https://doi.org/10.1016.j.apt.2016.08.011.   DOI
10 Loghman, A., Faegh, R.K. and Arefi, M. (2018), "Two dimensional time-dependent creep analysis of a thick-walled FG cylinder based on first order shear deformation theory", Steel Compos. Struct., 26(5), 533-547. https://doi.org/10.12989/scs.2018.26.5.533.   DOI
11 Madenci, E. and Ozutok, A. (2020a), "Variational approximate for high order bending analysis of laminated composite plates", Struct. Eng. Mech., 73(1), 97-108. https://doi.org/10.12989/sem.2020.73.1.097.   DOI
12 Madani, H., Hosseini, H. and Shokravi, M. (2016), "Differential cubature method for vibration analysis of embedded FG-CNT-reinforced piezoelectric cylindrical shells subjected to uniform and non-uniform temperature distributions", Steel Compos. Struct., 22(4), 889-913. https://doi.org/10.12989/scs.2016.22.4.889.   DOI
13 Madenci, E. (2019), "A refined functional and mixed formulation to static analyses of fgm beams", Struct. Eng. Mech., 69(4), 427-437. https://doi.org/10.12989/sem.2019.69.4.427.   DOI
14 Madenci, E. and Gulcu, S. (2020), "Optimization of flexure stiffness of FGM beams via artificial neural networks by mixed FEM", Struct. Eng. Mech., 75(5), 633-642. https://doi.org/10.12989/sem.2020.75.5.633   DOI
15 Madenci, E., Ozkilic, Y.O. and Gemi, L. (2020d), "Theoretical Investigation on Static Analysis of Pultruded GFRP Composite Beams", Academic Platform J. Eng. Sci., 8(3), 483-490. Doi: 10.21541/apjes.734770.   DOI
16 Gemi, L., Sahin, O.S. and Akdemir, A. (2017), "Experimental investigation of fatigue damage formation of hybrid pipes subjected to impact loading under internal pre-stress", Compos. Part B: Eng., 119, 196-205.   DOI
17 Gemi, L., Tarakcioglu, N., Akdemir, A. and Sahin, O.S. (2009), "Progressive fatigue failure behavior of glass/epoxy (±75) 2 filament-wound pipes under pure internal pressure", Mater. Design, 30(10), 4293-4298.   DOI
18 Iqbal, W., Naeem, M.N. and Jalil, M. (2019), "Numerical analysis of Williamson fluid flow along an exponentially stretching cylinder". AIP Advances, 9(5), 055118, http://dx.doi.org/10.1063/1.5092737.   DOI
19 Ishak, A., Nazar, R. and Pop, I. (2008), "Uniform suction/ blowing effect on flow and heat transfer due to stretching cylinder", App. Math. Mod., 32, 2059-2066. http://dx.doi.org/10.1016/j.apm.2007.06.036   DOI
20 Ishak, A. and Nazar, R. (2009), "Laminar boundary layer flow along a stretching cylinder", Eur. J. Sci. Res., 36(1), 22-29.
21 Karami B, Janghorban, M. and Tounsi, A. (2018), "Nonlocal strain gradient 3D elasticity theory for anisotropic spherical nanoparticles", Steel Compos. Struct., 27(2), 201-216. https://doi.org/10.12989/scs.2018.27.2.201   DOI
22 Karami, B., Janghorban, M. and Tounsi, A. (2017), "Effects of triaxial magnetic field on the anisotropic nanoplates", Steel Compos. Struct., 25(3), 361-374. https://doi.org/10.12989/scs.2017.25.3.361.   DOI
23 Khan, M. and Malik, R. (2015), "Forced convective heat transfer to Sisko fluid flow past a stretching cylinder", AIP Advances, 5(12), 127202, http://dx.doi.org/10.1063/1.4937346.   DOI
24 Konch, J. and Hazarika, G.C. (2017), "Unsteady Hydro magnetic flow of dusty fluid over a stretching cylinder with variable viscosity and thermal conductivity", Int. J. Adv. Sci. and Tech., 99, 57-70. http://dx.doi.org/10.14257/ijast.2017.99.05.   DOI
25 Emrah Madenci, Yasin Onuralp Ozkilic, Lokman Gemi, (2020b), "Experimental and theoretical investigation on flexure performance of pultruded GFRP composite beams with damage analyses", Compos. Struct., 242, 112162. DOI:10.1016/j.compstruct.2020.112162   DOI
26 Emrah Madenci, Yasin Onuralp Ozkilic, Lokman Gemi, (2020c), "Buckling and free vibration analyses of pultruded GFRP laminated composites: Experimental, numerical and analytical investigations", Compos. Struct., 254, 112806. DOI:10.1016/j.compstruct.2020.112806.   DOI
27 Gemi, L., Morkavuk, S., Koklu, U. and Gemi, D.S. (2019), "An experimental study on the effects of various drill types on drilling performance of GFRP composite pipes and damage formation", Compos. Part B: Eng., 172, 186-194.   DOI
28 Gemi, L. (2018), "Investigation of the effect of stacking sequence on low velocity impact response and damage formation in hybrid composite pipes under internal pressure. A comparative study", Compos. Part B: Eng., 153, 217-232.   DOI
29 Gemi, L., Koklu, U., Yazman, S. and Morkavuk, S. (2020a), "The effects of stacking sequence on drilling machinability of filament wound hybrid composite pipes: Part-1 mechanical characterization and drilling tests", Compos. Part B: Eng., 186, 107787. https://doi.org/10.1016/j.compositesb:2020.107787.   DOI
30 Gemi, L., Koroglu, M.A. and Ashour, A. (2018), "Experimental study on compressive behavior and failure analysis of composite concrete confined by glass/epoxy±55 filament wound pipes", Compos. Struct., 187, 157-168.   DOI
31 Gemi, L., Morkavuk, S., Koklu, U. and Yazman, S. (2020b), "The effects of stacking sequence on drilling machinability of filament wound hybrid composite pipes: Part-2 damage analysis and surface quality", Compos. Struct., 235, 111737. https://doi.org/ 10.1016/j.compstruct.2019.111737.   DOI
32 Benmansour, D.L., Kaci, A., Bousahla, A.A., Heireche, H., Tounsi, A., Alwabli, A.S. and Mahmoud, S.R. (2019), "The nano scale bending and dynamic properties of isolated protein microtubules based on modified strain gradient theory", Adv. Nano Res., 7(6), 443-457. https://doi.org/10.12989/anr.2019.7.6.443.   DOI
33 Chakrabarti, K.M. (1974), "Note on Boundary layer in a dusty gas", Am. Inst. Aeronaut. Astronaut. J., 12, 1136-1137. http://dx.doi.org/10.2514/3.49427   DOI
34 Derakhshandeh1a, J.F. and Alam, M.M. (2020), "Reynolds number effect on the flow past two tandem cylinders", Wind Struct., 30(5), 475-483. https://doi.org/10.12989/was.2020.30.5.475.   DOI
35 Chen, J., Zhuang, Y., Fang, H., Liu, W., Zhu, L. and Fan, Z. (2019a), "Energy absorption of foam-filled lattice composite cylinders under lateral compressive loading", Steel Compos. Struct., 31(2), 133-148. https://doi.org/10.12989/scs.2019.31.2.133.   DOI
36 Chen, W., Ji, C., Alam, M.M. and Xu, D. (2019b), "Flow-induced vibrations of three circular cylinders in an equilateral triangular arrangement subjected to cross-flow", Wind Struct., 29(1), 43-53. https://doi.org/10.12989/was.2019.29.1.043.   DOI
37 Civalek, O. (2017), "Free vibration of carbon nanotubes reinforced (CNTR) and functionally graded shells and plates based on FSDT via discrete singular convolution method", Compos. Part B: Eng., 111, 45-59.   DOI
38 Ebrahimi, F., Dabbagh, A., Rabczuk, T. and Tornabene, F. (2019), "Analysis of propagation characteristics of elastic waves in heterogeneous nanobeams employing a new two-step porosity-dependent homogenization scheme", Adv. Nano Res., 7(2), 135-143. https://doi.org/10.12989/anr.2019.7.2.135.   DOI
39 Eltaher, M.A., Almalki, T.A., Ahmed, K.I. and Almitani, K.H. (2019), "Characterization and behaviors of single walled carbon nanotube by equivalent-continuum mechanics approach", Adv. Nano Res., 7(1), 39-49. https://doi.org/10.12989/anr.2019.7.1.039.   DOI
40 Abdulrazzaq, M.A., Fenjan, R.M., Ahmed, R.A. and Faleh, N.M. (2020), "Thermal buckling of nonlocal clamped exponentially graded plate according to a secant function based refined theory", Steel Compos. Struct., 35(1), 147-57. https://doi.org/10.12989/scs.2020.35.1.147.   DOI
41 Atilla, O. and Emrah, M. (2017), "Static analysis of laminated composite beams based on higher-order shear deformation theory by using mixed-type finite element method", Int. J. Mech. Sci., 130, 234-243. DOI: 10.1016/j.ijmecsci.2017.06.013   DOI
42 Agranat, V.M. (1988), "Effect of pressure gradient on friction and heat transfer in a dusty boundary layer", Fluid Dyn., 23, 729-732. http://dx.doi.org/10.1007/BF02614150.   DOI
43 Akgoz, B. and Civalek, O. (2011), "Nonlinear vibration analysis of laminated plates resting on nonlinear two-parameters elastic foundations", Steel Compos. Struct., 11(5), 403-421. https://doi.org/10.12989/scs.2011.11.5.403.   DOI
44 Al-Maliki, A.F., Ahmed, R.A., Moustafa, N.M. and Faleh, N.M. (2020), "Finite element based modeling and thermal dynamic analysis of functionally graded graphene reinforced beams", Adv. Comput. Design, 5(2), 177-193. https://doi.org/10.12989/acd.2020.5.2.177.   DOI
45 Avcar, M. (2019), "Free vibration of imperfect sigmoid and power law functionally graded beams", Steel Compos. Struct., 30(6), 603-615. https://doi.org/10.12989/scs.2019.30.6.603.   DOI
46 Baaskaran, N., Ponappa, K. and Shankar, S. (2018), "Assessment of dynamic crushing and energy absorption characteristics of thin-walled cylinders due to axial and oblique impact load", Steel Compos. Struct., 28(2), 179-194. https://doi.org/10.12989/scs.2018.28.2.179.   DOI
47 Batou, B., Nebab, M., Bennai, R., Atmane, H.A., Tounsi, A. and Bouremana, M. (2019). Wave dispersion properties in imperfect sigmoid plates using various HSDTs", Steel Compos. Struct., 33(5), 699-716. https://doi.org/10.12989/scs.2019.33.5.699.   DOI
48 Mahdy, A. (2015), "Heat transfer and flow of a Casson fluid due to a stretching cylinder with the soret and dufour effects". J. Eng. Phys. Thermophy., 88(4), 928-936. https://doi.org/10.1007/s10891-015-1267-6.   DOI
49 Malik, M.Y., Naseer, M., Nadeem, S. and Rehman, A. (2013), "The boundary layer flow of Casson nanofluid over an exponentially stretching cylinder", Appl. Nanosci., 4, 869-873. https://doi.org/10.1007/s 13204-013-0267-0   DOI
50 Malik, M.Y., Hussain., A., Salahuddin., T., Awais., M., Bilal, S. Khan, F. (2016), "Flow of Sisko fluid over a stretching cylinder and heat transfer with viscous dissipation and variable thermal conductivity: A numerical study", AIP Advances, 6(4), 045118. https://doi.org/10.1063/1.4948458.   DOI
51 Moghaddam, S.H. and Masoodi, A.R. (2019), "Elastoplastic nonlinear behavior of planar steel gabled frame", Adv. Comput. Design, 4(4), 397-413.: https://doi.org/10.12989/acd.2019.4.4.397.   DOI
52 Naseer, M., Malik, M.Y., Nadeem, S. and Rehman, A. (2014), "The boundary layer flow of hyperbolic tangent fluid over a vertical exponentially stretching cylinder", Alexandria Eng. J., 53, 747-750. https://doi.org/10.1016/j.aej.2014.05.001.   DOI
53 Ozkilic, Y.O., Madenci, E. and Gemi, L. (2020), "Tensile and compressive behaviors of the pultruded GFRP lamina", Turkish J. Eng., 4(4), 169-175. DOI: 10.31127/tuje.631481   DOI
54 Rad, M.H.G., Shahabian, F. and Hosseini, S.M. (2020), "Geometrically nonlinear dynamic analysis of FG graphene platelets-reinforced nanocomposite cylinder: MLPG method based on a modified nonlinear micromechanical model", Steel Compos. Struct., 35(1), 77-92. https://doi.org/10.12989/scs.2020.35.1.077.   DOI
55 Rasekh, A., Ganji, D.D., Tavakoli, S., Ehsani, H. and Naeejee, S. (2014), "MHD flow and heat transfer of dusty fluid over a stretching hollow cylinder with a convective boundary conditions", Heat Trans. Asian Res., 43(3), 221-232. https://doi.org/10.1002/htj.21073   DOI
56 Saffman, P.G. (1962), "On the stability of laminar flow of a dusty gas", J. Fluid Mech., 13, 120-128. https://doi.org/10.1017/S0022112062000555.   DOI
57 Rebhi, A.D. (2010), "On boundary layer flow of dusty gas from a horizontal circular cylinder", Braz. J. Chem. Eng., 27(4), 653-662. http://dx.doi.org/10.1590/S0104-66322010000400017.   DOI
58 Rehman, A. (2015), "Boundary layer flow and heat transfer of Micropolar Fluid over a vertical exponentially stretching cylinder", Appl. Comp. Math., 4(6), 424-430. http://dx.doi.org/10.11648/j.acm.20150406.15.   DOI
59 Safaei, B., Khoda, F.H. and Fattahi, A.M. (2019), "Non-classical plate model for single-layered graphene sheet for axial buckling", Adv Nano Res., 7(4), 265-275. https://doi.org/10.12989/anr.2019.7.4.265   DOI
60 Salah, F., Boucham, B., Bourada, F., Benzair, A., Bousahla, A.A., and Tounsi, A. (2019), "Investigation of thermal buckling properties of ceramic-metal FGM sandwich plates using 2D integral plate model", Steel Compos. Struct., 33(6), 805-822. https://doi.org/10.12989/scs.2019.33.6.805.   DOI
61 Salahuddin, T., Malik, M.Y., Hussain, A., Awais, M. and Bilal, S. (2017), "Mixed convection boundary layer flow of Williamson fluid with slip conditions over a stretching cylinder by using Keller-box method", Int. J. Nonlinear Sci. Numer. Simul., 18(1), 9-17. https://doi.org/10.1515/ijnsns.2015.0090.   DOI
62 Sharma, N. and Panda, S.K. (2020a), "Multiphysical numerical (FE-BE) solution of sound radiation responses of laminated sandwich shell panel including curvature effect", Comput. Math. Appl., 80(5), 1221-1239. https://doi.org/10.1016/j.camwa.2020.06.010.   DOI
63 Selmi, A. (2019), "Effectiveness of SWNT in reducing the crack effect on the dynamic behavior of aluminium alloy", Adv. Nano Res., 7(5) 365-377. https://doi.org/10.12989/anr.2019.7.5.365.   DOI
64 Selmi, A. and Bisharat, A. (2018), "Free vibration of functionally graded SWNT reinforced aluminum alloy beam", J. Vibroeng., 20(5), 2151-2164. https://doi.org/10.21595/jve.2018.19445.   DOI
65 Selmi, A., Friebel, C., Doghri, I. and Hassis, H. (2007), "Prediction of the elastic properties of single walled carbon nanotube reinforced polymers: a comparative study of several micromechanical models", Compos. Sci. Technol., 67, 2071-2084. https://doi.org/10.1016/j.compscitech.2006.11.016   DOI
66 Shadravan, S., Ramseyer, C.C. and Floyd, R.W. (2019), "Comparison of structural foam sheathing and oriented strand board panels of shear walls under lateral load", Adv. Comput. Design, 4(3), 251-272. https://doi.org/10.12989/acd.2019.4.3.251.   DOI
67 Shahsavari, D., Karami, B. and Janghorban, M. (2019), "Size-dependent vibration analysis of laminated composite plates", Adv. Nano Res., 7(5), 337-349. https://doi.org/10.12989/anr.2019.7.5.337.   DOI
68 Sharma, N., Mahapatra, T.R and Panda, S.K. (2017a), "Vibroacoustic behaviour of shear deformable laminated composite flat panel using BEM and the higher order shear deformation theory", Compos. Struct., 180, 116-129. https://doi.org/10.1016/j.compstruct.2017.08.012.   DOI
69 Sharma, N., Mahapatra, T.R. and Panda, S.K. (2017c), "Vibroacoustic analysis of un-baffled curved composite panels with experimental validation", Struct. Eng. Mech., 64(1), 93-107. https://doi.org/10.12989/sem.2017.64.1.093.   DOI
70 Sharma, N., Mahapatra, T.R. and Panda, S.K. (2017b), "Numerical study of vibro-acoustic responses of un-baffled multi-layered composite structure under various end conditions and experimental validation", Latin Am. J. Solids Struct., 14(8), 1547-1568. https://doi.org/10.1590/1679-78253830.   DOI
71 Sharma, N., Mahapatra, T.R. and Panda, S.K. (2018a), "Numerical analysis of acoustic radiation responses of shear deformable laminated composite shell panel in hygrothermal environment", J. Sound Vib., 431, 346-366. https://doi.org/10.1016/j.jsv.2018.06.007.   DOI
72 Sharma, N., Mahapatra, T.R. and Panda, S.K. (2018b), "Numerical analysis of acoustic radiation properties of laminated composite flat panel in thermal environment: a higher-order finite-boundary element approach", Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 232(18), 3235-3249.   DOI
73 Sharma, N., Mahapatra, T.R. and Panda, S.K. (2018e), "Thermoacoustic behavior of laminated composite curved panels using higher-order finite-boundary element model", Int. J. Appl. Mech., 10(2), 1850017.   DOI
74 Sharma, N., Mahapatra, T.R. and Panda, S.K. (2019a), "Hygrothermal effect on vibroacoustic behaviour of higher-order sandwich panel structure with laminated composite face sheets", Eng. Struct., 197, 109355.   DOI
75 Sharma, N., Mahapatra, T.R. and Panda, S.K. (2019b), "Vibroacoustic analysis of thermo-elastic laminated composite sandwich curved panel: a higher-order FEM-BEM approach", Int. J. Mech. Mater. Design, 15(2), 271-289   DOI