• Title/Summary/Keyword: Slip Factor

Search Result 220, Processing Time 0.028 seconds

Investigation of Pile Behaviour according to Interface Properties - Comparison between Pile Model Test Using Close Range Photogrammetry and Numerical Analysis (경계면 물성치에 따른 말뚝 거동 분석 - 근거리 사진계측을 이용한 모형시험과 수치해석 비교)

  • Lee, Jung-Min;Lee, Yong-Joo
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.9
    • /
    • pp.29-39
    • /
    • 2014
  • In this study, model pile-load test with numerical analysis was carried out to compare and analyze pile behaviour according to interface properties. In the model test, Close Range Photogrammetry (CRP) was chosen to measure the ground deformation. In addition, model steel and concrete piles were used. Based on the model pile test, interface elements around the model pile were used to simulate the slip effect. Interface properties were adopted as interface reduction factor $R_{inter}$. Interface reduction factor, $R_{inter}$ plays a key role in the interface properties. Through this study, it was found that the model ground behaviour measured by CRP corresponded well to the one predicted by the numerical analysis. And, the interface strength reduction factor, $R_{inter}$ value of the steel pile was higher than that of the concrete pile.

A Study on the Analysis for Aerodynamic design of centrifugal Compressor of the Marine Turbocharger (박용 터보챠저 원심압축기의 공력설계에 대한 해석적 연구)

  • Oh, Kook-Taek;Kim, Hong-Won;Ghal, Sang-Hak;Ha, Ji-Soo;Ryu, Seung-Chan
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.649-654
    • /
    • 2001
  • This paper describes aerodynamic preliminary design performance prediction and flow analysis for centrifugal compressor of the marine middle engine turbocharger. The performance characteristics of turbocharger compressor are investigated at various operating conditions using mass flow rate and revolution speed, and computational flow analysis for impeller and diffuser at design point are performed. Preliminary design results correspond to actual compressor geometric values comparatively by applying modified slip factor. Performance prediction and flow analysis results show good agreement with experiments. Therefore, this will provide the performance prediction in preliminary design, and help to increase the design capability for optimized impeller.

  • PDF

A Study on the 2nd Excitation Method for CVCF Generation of Doubly-fed Induction Generator (II) (권선형 유도발전기 CVCF를 위한 2차 여자제어법에 관한 연구 (II))

  • Ahn, Jin-Woo;Hwang, Young-Moon
    • Proceedings of the KIEE Conference
    • /
    • 1990.11a
    • /
    • pp.45-48
    • /
    • 1990
  • This paper deals with the control strategy for constant voltage, constant frequency (CVCF) generation of doubly-fed Induction generator. As induction machine is a nonlinear and multivariable machine, so, the influential factors for CVCF generation of induction generator are the magnitude of output voltage, load current and its power factor, slip of the machine, etc. To get appropriate control scheme and to research the effect of its parameters, the control equation of induction machine is derived and tested. The derived condition is very useful for the CVCF control of the machine and for determing the characteristics of the system. The simulation results show that magnetizing reactance and rotor resistance is a very important parameter in this control system.

  • PDF

Performance Analysis of the Centrifugal Pump Impeller Using Commercial CFD Code (상용 CFD코드를 이용한 원심펌프 임펠러의 성능해석)

  • Choi, Young-Seok;Lee, Yong-Kab;Hong, Soon-Sam;Kang, Shin-Hyung
    • The KSFM Journal of Fluid Machinery
    • /
    • v.4 no.1 s.10
    • /
    • pp.38-45
    • /
    • 2001
  • A commercial CFD code is used to compute the 3-D viscous flow field within the impeller of a centrifugal pump. Several preliminary numerical calculations are carried out to determine the influence of the parameters such as the grid systems, the numerical schemes, the turbulence models and the shape of the vaneless diffusers at the design flow rate. The results of the preliminary study are used for the calculation of the off-design flow conditions. The circumferentially averaged results such as the radial and tangential velocities, the exit flow angle, the slip factor, the static pressure and the total pressure are compared with the experimental data at the impeller exit to discuss the influence of the prescribed parameters.

  • PDF

Effects of the Impeller Inlet Tip Clearance on the Flow and Performance of Airfoil Fans (임펠러 흡입구 간극이 원심형 에어포일 송풍기의 성능에 미치는 영향)

  • Kang, Shin-Hyoung;Kim, Young-Jae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.8
    • /
    • pp.957-968
    • /
    • 1999
  • Performance tests of an airfoil fan and measurement of flow fields at the impeller exit are carried out to investigate the effects of the tip clearance between the rotor and inlet casing on the impeller performance. The impeller is twelve bladed of NACA 65-810 airfoils and tested with 3 different size of gap; 1, 2, 4mm. The relative decrease of pressure rising performance of the fan is 15 percent for the design flow rate when the gap size is 1 percent of the impeller diameter. The reduction of performance becomes large as the flow rate increases. The leakage flow through the clearance affects the through flow of the impeller, which results in decrease of the slip factor as well as the impeller efficiency. The data base obtained in the present study can be used for the design and flow analysis of the airfoil fans.

Hydraulic Design of Reactor Coolant Pump Considering Head Curve Slope at Design Point (양정곡선 기울기를 고려한 원자로 냉각재 펌프의 수력설계)

  • Yoo, Il-Su;Park, Mu-Ryong;Yoon, Eui-Soo
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.1
    • /
    • pp.18-23
    • /
    • 2011
  • The hydraulic part in reactor coolant pump consists of suction nozzle, impeller, diffuser, and discharge nozzle. Among them, impeller is required to be designed to satisfy performance requirements such as head, NPSHR, and head curve slope at design point. Present study is intended to suggest the preliminary design method sizing the impeller size to satisfy the design requirement particularly including head curve slope at design point. On a basis of preliminary design result, hydraulic components have been designed in detail by CFD and then manufactured in a reduced scale. Experiment in parallel with computational analysis has been executed in order to confirm the hydraulic performance. Comparison results show good agreement with design result, confirming the validity of design method suggested in this study.

Performance Variations of Small Centrifugal Compressor with Exit Blade Thickness (초소형 원심압축기의 날개 두께 변화에 따른 성능에 관한 실험적 연구)

  • Kang, Shin-Hyoung;Cho, Woon-Je;Yun, Hayong;Lee, Seungkap
    • 유체기계공업학회:학술대회논문집
    • /
    • 1998.12a
    • /
    • pp.135-141
    • /
    • 1998
  • Some sized centrifugal compressor were designed and their performance measured to investigate the effects of exit blade thickness, width and back swept angle. The impeller of larger blade thickness shows low pressure ratio compared with that of smaller one. Backswept angle have also large effect on the efficiency. Measured values of slip factor are quite different from the estimated values of Wiesner-Busemann model and increase with the flow rate.

  • PDF

The Effects of the Microstructural Change of Dual Phase Steel on Fatigue Fracture Propagation (복합조직강의 미시조직변화가 피로파괴전파에 미치는 영향)

  • Oh, Sae-Wook;Kim, Ung-Jip
    • Journal of Ocean Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.58-66
    • /
    • 1991
  • Not only difference of fatigue crack growth and propagation behavior resulted from the grain size, the hardness ratio and volume fraction in M.E.F. dual phase steel composed of martensite in hard phase and ferrite in soft phase, but also the effects of the plastic constraint were investigated by fracture mechanics and microstructural method. The main results obtained are as follows: 1) The fatigue endurance of M.E.F. steel increases with decreasing the grain size, increasing the ratio of hardness and volume fraction. 2) The initiation of slip and crack occures faster as the stress level goes higher. These phenomena result from the plastic constraint effect of the second phase. 3) The crack propagation rate in the constant stress level is faster as the grain size gets larger, the ratio of hardness lower and volume fraction smaller.

  • PDF

Two-Zone Modeling for Centrifugal Impellers (원심형 임펠러에 대한 이구역 모델링)

  • Oh, Hyoung Woo;Chung, Myung Kyoon;Kim, Jae Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.9
    • /
    • pp.1129-1138
    • /
    • 1999
  • This paper presents a systematic two-zone modeling for reliable performance prediction of centrifugal compressors. In order to improve the predictive capability, a modified jet slip factor is developed and new corrections for the wake flow deviation and mass fraction are suggested based on the comprehensive experimental data of the three Eckardt impellers. The proposed two-zone modeling is tested against nine sets of measured data of centrifugal compressors. The results are also compared with those obtained by the mean streamline analysis. It was found that the predictions by the present two-zone modeling agree fairly well with experimental data for a variety of centrifugal compressors over the wide operating conditions.

Automatic Guidance System for Tractor based upon Position-measurement Systems (위치(位置) 측정장치(測定裝置)를 이용한 트랙터의 자동(自動) 주행장치(走行裝置))

  • Choi, C.H.
    • Journal of Biosystems Engineering
    • /
    • v.15 no.2
    • /
    • pp.79-87
    • /
    • 1990
  • An automatic guidance system based upon two position-measurement systems was designed to record where the tractor traveled and to guide the tractor along the predetermined path. An algorithm, using the kinematic behavior of tractor movement, was developed to determine the steering angle to reduce lateral position error. The algorithm was based upon constant travel speed, constant steering rate, and zero slip angles of the tractor wheels. The algorithm was evaluated through use of computer simulation and verified in field experiments. Results showed that the distance interval between position measurements was an important factor in guidance system performance. The position-measurement error of the guidance system must be less than 5 cm to be acceptably precise for field operations. An algorithm based upon a variable steering rate might improve the stability of the guidance system. More accurate measurement of tractor position and yaw angle, and faster error processing are required to improve the field performance of the guidance system.

  • PDF