• Title/Summary/Keyword: Sliding mode control

Search Result 1,382, Processing Time 0.037 seconds

Reconfigurable Flight Control System Design Using Sliding Mode Based Model Following Control Scheme

  • Cho, Dong-Hyun;Kim, Ki-Seok;Kim, You-Dan
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.4 no.1
    • /
    • pp.1-8
    • /
    • 2003
  • In this paper, a reconfigurable flight control system is designed by applying the sliding mode control scheme. The sliding mode control method is a nonlinear control method which has been widely used because of its merits such as robustness and flexibility. In the sliding mode controller design, the signum function is usually included, but it causes the undesirable chattering problem. The chattering phenomenon can be avoided by using the saturation function instead of signum function. However, the boundary layer of the sliding surface should be carefully treated because of the use of the saturation function. In contrast to the conventional approaches, the thickness of the boundary layer of our approach does not need to be small. The reachability to the boundary layer is guaranteed by the sliding mode controller. The fault detection and isolation process is operated based on a sliding mode observer. To evaluate the reconfiguration performance, a numerical simulation using six degree-of-freedom aircraft dynamics is performed.

Fuzzy-Sliding Mode Control for SCARA Robot Based on DSP (DSP를 이용한 스카라 로봇의 퍼지-슬라이딩 모드 제어)

  • Go, Seok-Jo;Lee, Min-Cheol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.4
    • /
    • pp.285-294
    • /
    • 2000
  • This paper shows that the proposed fuzzy-sliding mode control algorithm for a SCARA robot could reduce the chattering due to sliding mode control and is robust against a change of payload and parameter uncertainties. That is, the chattering can be reduced by changing control input for compensating disturbances into a control input by fuzzy rules within a pre-determined dead zone. The experimental results show that the chattering can be reduced more effectively by the fuzzy-sliding mode control algorithm than the sliding mode control with two dead zones. It is proved experimentally that the proposed control algorithm is robust to a change of payload. The proposed control algorithm is implemented to the SCARA robot using a DSP(board) for high speed calculations.

  • PDF

Position Control of an Electro-hydraulic Servo System with Sliding Mode (전기유압 서보시스템의 슬라이딩 모드 위치제어)

  • Huh, Jun Young
    • Journal of Drive and Control
    • /
    • v.18 no.3
    • /
    • pp.16-22
    • /
    • 2021
  • The variable structure controller has the characteristic that while in sliding mode, the system moves along the switching plane in the vicinity of the switching plane, so it is robust to the parameter fluctuations of the plant. However, a controller based on a variable structure may not meet the desired performance when it is commanded to track any input or exposed to disturbances. To solve this problem, a sliding mode controller based on the IVSC approach excluding an integrator is proposed in this study. The proposed sliding mode control was applied to the position control of a hydraulic cylinder piston. The sliding plane was determined by the pole placement and the control input was designed to ensure the existence of the sliding mode. The feasibility of the modeling and controller was reviewed by comparing it with a conventional proportional control through computer simulation using MATLAB software and experiment in the presence of significant plant parameter fluctuations and disturbances.

SLIDING MODE MOULD LEVEL CONTROL IN CONTINUOUS CASTING PROCESS

  • Kueon, Yeong-Seob
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.4
    • /
    • pp.50-55
    • /
    • 1998
  • Mould level control system for continuous casting process involves stick-slip friction in the sliding gate , time-delay, non-linearity, and certain uncertainties such as friction force variations between molten steel and the inner wall of mould. In this paper, sliding mode control technique was used to solve these complex control problem. The controller is then designed and implemented onto the continuous casting process. Testing result shows that sliding mode controller can decrease the fluctuating magnitude of the mould level and is superior to the existing PID controller.

A New Approach to the Design of An Adaptive Fuzzy Sliding Mode Controller

  • Lakhekar, Girish Vithalrao
    • International Journal of Ocean System Engineering
    • /
    • v.3 no.2
    • /
    • pp.50-60
    • /
    • 2013
  • This paper presents a novel approach to the design of an adaptive fuzzy sliding mode controller for depth control of an autonomous underwater vehicle (AUV). So far, AUV's dynamics are highly nonlinear and the hydrodynamic coefficients of the vehicles are difficult to estimate, because of the variations of these coefficients with different operating conditions. These kinds of difficulties cause modeling inaccuracies of AUV's dynamics. Hence, we propose an adaptive fuzzy sliding mode control with novel fuzzy adaptation technique for regulating vertical positioning in presence of parametric uncertainty and disturbances. In this approach, two fuzzy approximator are employed in such a way that slope of the linear sliding surface is updated by first fuzzy approximator, to shape tracking error dynamics in the sliding regime, while second fuzzy approximator change the supports of the output fuzzy membership function in the defuzzification inference module of fuzzy sliding mode control (FSMC) algorithm. Simulation results shows that, the reaching time and tracking error in the approaching phase can be significantly reduced with chattering problem can also be eliminated. The effectiveness of proposed control strategy and its advantages are indicated in comparison with conventional sliding mode control FSMC technique.

Position Sensorless Control of BLDC Motors Based on Global Fast Terminal Sliding Mode Observer

  • Wang, Xiaoyuan;Fu, Tao;Wang, Xiaoguang
    • Journal of Power Electronics
    • /
    • v.15 no.6
    • /
    • pp.1559-1566
    • /
    • 2015
  • The brushless DC motor (BLDCM) has many advantages. As a result, it is widely used in electric vehicle (EV) drive systems. To improve the reliability of the motor control system, a position sensorless control strategy based on a sliding mode observer (SMO) is proposed. The global fast terminal sliding mode observer (GFTSMO) is proposed to enhance the control performance of the SMO control system. The advantages of the linear sliding mode and the nonsingular terminal sliding mode (NTSM) are combined in the control strategy. The convergence speed of the system state is enhanced. The motor commutation point is obtained with the observation of the back EMF, and the instantaneous torque value of the motor is calculated. Therefore, the position sensorless control of the BLDCM is realized. Experimental results show that the proposed control strategy can improve the convergence speed, dynamic characteristics and robustness of the system.

Control of Multi-Joint Manipulator Using PD-Sliding Mode (PD-슬라이딩 모드를 이용한 다 관절 매니퓰레이터 제어)

  • Son, Hyun-Seok;Lee, Won-Ki;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.12
    • /
    • pp.1286-1293
    • /
    • 2008
  • This paper proposes a realization of robust trajectory tracking for an industrial robot by using PD-sliding mode hybrid control. The PD control has a good performance in the transient period while the sliding mode control has robustness against the system uncertainties. The proposed control method is proposed for the control of a multi-joint robot by taking advantages of both the PD and sliding mode controls. The embodiment of distributed controllers that drive 4-DOF axes has evaluated through experiments with the multi-joint robot AT1. The PD-sliding mode algorithm which is proposed in this paper shows a good performance in the transient period and robustness against disturbances and This paper shows accuracy of end-effector.

A Study on the Optimal Model Following Sliding Mode Control

  • Kim, Min-Chan;Park, Seung-Kyu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.38.4-38
    • /
    • 2001
  • In this paper, a novel model following sliding mode control is proposed by using a novel sliding mode with virtual state. This sliding surface has nominal dynamics of an original system and makes it possible that the Sliding Mode Control(SMC) technique is combined with the optimal controller. Its design is based on the argument system whose dynamics have one higher order than that of the original system. The reaching phase is eliminated by using an initial virtual state that makes the initial sliding function equal to zero.

  • PDF

FUZZY SLIDING MODE ITERATIVE LEARNING CONTROL Of A MANIPULATOR

  • Park, Jae-Sam
    • Proceedings of the IEEK Conference
    • /
    • 2002.07c
    • /
    • pp.1483-1486
    • /
    • 2002
  • In this paper, a new scheme of iterative loaming control of a robot manipulator is presented. The proposed method uses a fuzzy sliding mode controller(FSMC), which is designed based on the similarity between the fuzzy logic control(FLC) and the sliding mode control(SMC), for the feedback. With this, the proposed method makes possible fDr fast iteration and has advantages that no linear approximation is used for the derivation of the learning law or in the stability proof Full proof of the convergence of the fuzzy sliding base learning scheme Is given.

  • PDF

Static Output Feedback Sliding Mode Control Design for Linear Systems with Mismatched Uncertainties (비정합 불확실성을 갖는 선형 시스템을 위한 정적 출력 궤환 슬라이딩 모드 제어기 설계)

  • Choi, Han-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.1
    • /
    • pp.15-18
    • /
    • 2007
  • We consider the problem of designing a static output feedback sliding mode control law for linear dynamical systems with mismatched uncertainties in the state matrix. We assume that an output dependent sliding surface guaranteeing the quadratic stability of the sliding mode dynamics is given, the reachability condition is not required to be satisfied globally, and the output feedback sliding mode control law complises both linear and discontinuous parts. We reduce the problem of designing the linear part of the sliding mode control law to a simple LMI problem which offers design flexibility for combining various useful convex design specifications. Our approach does not require state transformation and it can be applied to mismatched uncertain systems.